A nonconforming finite element method for data assimilation subject to the transient Stokes problem

In this study, we will consider the unique continuation problem for reconstructing the final state of the transient Stokes problem when the initial data is unknown, but additional data is given in a subdomain in space-time. The backward differentiation method is used to discretise the time derivativ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerische Mathematik Ročník 157; číslo 6; s. 2017 - 2054
Hlavní autoři: Burman, Erik, Garg, Deepika, Preuss, Janosch
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.12.2025
Témata:
ISSN:0029-599X, 0945-3245
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this study, we will consider the unique continuation problem for reconstructing the final state of the transient Stokes problem when the initial data is unknown, but additional data is given in a subdomain in space-time. The backward differentiation method is used to discretise the time derivative and standard nonconforming affine finite element approximation is applied for the discretisation in space. The discrete system is regularized by adding a penalty of the $$H^1$$ H 1 -semi-norm of the initial data, scaled with the mesh parameter. The scaling is chosen so that an optimal error estimate holds in $$L^2(T_1,T;H^1(\Omega ))$$ L 2 ( T 1 , T ; H 1 ( Ω ) ) , $$T_1>0$$ T 1 > 0 . The estimate is derived using the Lipschitz stability of the reconstruction problem and interpolation between discrete spaces. The theory is validated on some numerical examples.
AbstractList In this study, we will consider the unique continuation problem for reconstructing the final state of the transient Stokes problem when the initial data is unknown, but additional data is given in a subdomain in space-time. The backward differentiation method is used to discretise the time derivative and standard nonconforming affine finite element approximation is applied for the discretisation in space. The discrete system is regularized by adding a penalty of the $$H^1$$ H 1 -semi-norm of the initial data, scaled with the mesh parameter. The scaling is chosen so that an optimal error estimate holds in $$L^2(T_1,T;H^1(\Omega ))$$ L 2 ( T 1 , T ; H 1 ( Ω ) ) , $$T_1>0$$ T 1 > 0 . The estimate is derived using the Lipschitz stability of the reconstruction problem and interpolation between discrete spaces. The theory is validated on some numerical examples.
In this study, we will consider the unique continuation problem for reconstructing the final state of the transient Stokes problem when the initial data is unknown, but additional data is given in a subdomain in space-time. The backward differentiation method is used to discretise the time derivative and standard nonconforming affine finite element approximation is applied for the discretisation in space. The discrete system is regularized by adding a penalty of the H1-semi-norm of the initial data, scaled with the mesh parameter. The scaling is chosen so that an optimal error estimate holds in L2(T1,T;H1(Ω)), T1>0. The estimate is derived using the Lipschitz stability of the reconstruction problem and interpolation between discrete spaces. The theory is validated on some numerical examples.
Author Garg, Deepika
Burman, Erik
Preuss, Janosch
Author_xml – sequence: 1
  givenname: Erik
  surname: Burman
  fullname: Burman, Erik
– sequence: 2
  givenname: Deepika
  surname: Garg
  fullname: Garg, Deepika
– sequence: 3
  givenname: Janosch
  surname: Preuss
  fullname: Preuss, Janosch
BookMark eNotkE1LAzEQhoNUsK3-AU8Bz9FJdrObHEvxCwoeVPAWstuJTe0mdZMe_Pem1tMMzDPvC8-MTEIMSMg1h1sO0N4lAME5AyEZcAnA1BmZgq4lq0QtJ2UHoZnU-uOCzFLaAvC2qfmU9AtaovoYXBwHHz6p88FnpLjDAUOmA-ZNXNNypWubLbUp-cHvbPYx0HTotthnmiPNG6R5tCH549drjl-Y6H6MXcm5JOfO7hJe_c85eX-4f1s-sdXL4_NysWK9aEVmXSel00rwToFGBVLWa9lYJVBU6Dq03KHgja5Brqumc5VoQLVd7dpaWKXqak5uTrml9_uAKZttPIyhVJrCag1aNbxQ4kT1Y0xpRGf2ox_s-GM4mKNMc5JpikzzJ9Oo6hd6DGny
Cites_doi 10.1007/978-3-642-22980-0
10.1090/mcom/3092
10.1137/060670961
10.1007/s007910050004
10.1137/22M1542933
10.5802/smai-jcm.122
10.1137/16M110962X
10.1051/m2an/2023106
10.1007/s10444-020-09806-x
10.1051/m2an/2020062
10.1007/978-1-4757-4355-5
10.1137/22M1508637
10.1007/s00211-018-0970-6
10.1051/m2an/2010058
10.1137/130916862
10.1090/mcom/3255
10.1007/978-0-387-75934-0
10.1016/j.cma.2020.113224
10.1051/m2an/2018030
10.1088/1361-6420/ab9161
10.1007/s00211-018-0949-3
10.1090/S0025-5718-07-01951-5
10.1090/mcom/3240
10.1007/s00332-013-9189-y
ContentType Journal Article
Copyright The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
DOI 10.1007/s00211-025-01500-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0945-3245
EndPage 2054
ExternalDocumentID 10_1007_s00211_025_01500_8
GroupedDBID --Z
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUFD
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDYV
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
YNT
YQT
Z45
ZMTXR
ZWQNP
~EX
AESKC
ID FETCH-LOGICAL-c272t-bb55f9821b809e80554d56a82e23efbea1fe2169405d36bf326087b4f742a8843
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001588621800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-599X
IngestDate Sat Nov 08 19:25:57 EST 2025
Sat Nov 29 06:57:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-bb55f9821b809e80554d56a82e23efbea1fe2169405d36bf326087b4f742a8843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00211-025-01500-8.pdf
PQID 3269909861
PQPubID 2043616
PageCount 38
ParticipantIDs proquest_journals_3269909861
crossref_primary_10_1007_s00211_025_01500_8
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References E Burman (1500_CR12) 2023; 61
R Temam (1500_CR19) 1977
A Ern (1500_CR22) 2004
E Burman (1500_CR26) 2007; 76
J-P Puel (1500_CR1) 2009; 48
B García-Archilla (1500_CR16) 2020; 46
E Burman (1500_CR6) 2018; 87
A Azouani (1500_CR14) 2014; 24
E Burman (1500_CR8) 2024; 58
1500_CR29
R Lattès (1500_CR3) 1967
E Burman (1500_CR27) 2025; 11
E Burman (1500_CR9) 2021; 55
GC García (1500_CR13) 2011; 45
E Burman (1500_CR5) 2017; 86
M Crouzeix (1500_CR17) 1973; 7
CF Mondaini (1500_CR15) 2018; 56
SH Christiansen (1500_CR18) 2018; 140
M Boulakia (1500_CR7) 2020; 36
E Burman (1500_CR4) 2013; 35
DA Pietro (1500_CR20) 2012
E Burman (1500_CR11) 2018; 52
E Burman (1500_CR24) 2024; 62
E Burman (1500_CR10) 2018; 139
J Schöberl (1500_CR28) 1997; 1
SC Brenner (1500_CR21) 2008
E Burman (1500_CR25) 2020; 369
AN Tikhonov (1500_CR2) 1977
E Burman (1500_CR23) 2018; 87
References_xml – start-page: 384
  volume-title: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin) [Mathematics & Applications]
  year: 2012
  ident: 1500_CR20
  doi: 10.1007/978-3-642-22980-0
– volume: 86
  start-page: 75
  issue: 303
  year: 2017
  ident: 1500_CR5
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3092
– start-page: 258
  volume-title: Solutions of Ill-Posed Problems. Scripta Series in Mathematics
  year: 1977
  ident: 1500_CR2
– volume: 48
  start-page: 1089
  issue: 2
  year: 2009
  ident: 1500_CR1
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/060670961
– volume: 7
  start-page: 33
  issue: R–3
  year: 1973
  ident: 1500_CR17
  publication-title: Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge
– volume: 1
  start-page: 41
  issue: 1
  year: 1997
  ident: 1500_CR28
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s007910050004
– start-page: 368
  volume-title: Méthode de Quasi-réversibilité et Applications. Travaux et Recherches Mathématiques, No. 15
  year: 1967
  ident: 1500_CR3
– volume: 62
  start-page: 893
  issue: 2
  year: 2024
  ident: 1500_CR24
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/22M1542933
– volume: 11
  start-page: 165
  year: 2025
  ident: 1500_CR27
  publication-title: SMAI J. Comput. Math.
  doi: 10.5802/smai-jcm.122
– volume: 56
  start-page: 78
  issue: 1
  year: 2018
  ident: 1500_CR15
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M110962X
– volume: 58
  start-page: 223
  year: 2024
  ident: 1500_CR8
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2023106
– volume: 46
  start-page: 61
  issue: 4
  year: 2020
  ident: 1500_CR16
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-020-09806-x
– volume: 55
  start-page: 969
  year: 2021
  ident: 1500_CR9
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2020062
– volume-title: Theory and Practice of Finite Elements
  year: 2004
  ident: 1500_CR22
  doi: 10.1007/978-1-4757-4355-5
– volume: 61
  start-page: 2534
  issue: 5
  year: 2023
  ident: 1500_CR12
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/22M1508637
– volume: 140
  start-page: 327
  issue: 2
  year: 2018
  ident: 1500_CR18
  publication-title: Numer. Math.
  doi: 10.1007/s00211-018-0970-6
– volume: 45
  start-page: 361
  issue: 2
  year: 2011
  ident: 1500_CR13
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2010058
– start-page: 500
  volume-title: Navier–Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications
  year: 1977
  ident: 1500_CR19
– volume: 35
  start-page: 2752
  issue: 6
  year: 2013
  ident: 1500_CR4
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130916862
– volume: 87
  start-page: 1029
  issue: 311
  year: 2018
  ident: 1500_CR6
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3255
– start-page: 397
  volume-title: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics
  year: 2008
  ident: 1500_CR21
  doi: 10.1007/978-0-387-75934-0
– volume: 369
  start-page: 113224
  year: 2020
  ident: 1500_CR25
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113224
– volume: 52
  start-page: 2065
  issue: 5
  year: 2018
  ident: 1500_CR11
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2018030
– volume: 36
  start-page: 085003
  issue: 8
  year: 2020
  ident: 1500_CR7
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/ab9161
– volume: 139
  start-page: 505
  issue: 3
  year: 2018
  ident: 1500_CR10
  publication-title: Numer. Math.
  doi: 10.1007/s00211-018-0949-3
– ident: 1500_CR29
– volume: 76
  start-page: 1119
  issue: 259
  year: 2007
  ident: 1500_CR26
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-07-01951-5
– volume: 87
  start-page: 633
  issue: 310
  year: 2018
  ident: 1500_CR23
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3240
– volume: 24
  start-page: 277
  issue: 2
  year: 2014
  ident: 1500_CR14
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-013-9189-y
SSID ssj0017641
Score 2.4332993
Snippet In this study, we will consider the unique continuation problem for reconstructing the final state of the transient Stokes problem when the initial data is...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 2017
SubjectTerms Discrete systems
Finite element method
Title A nonconforming finite element method for data assimilation subject to the transient Stokes problem
URI https://www.proquest.com/docview/3269909861
Volume 157
WOSCitedRecordID wos001588621800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6M4cGL8ydOp7yDNw22WZMmxyEOT0Ocym6laRMoopO18-_3pT8GAz3sXEjDe02-7zXfywdwo6QgFNCOSRtKFrnYMZ0LyWJCD0uAlUue12YT8WymFgv93IO7f0_w72vfJCp5uReZiSBgvrM3lNzbFbzM3zdHBrGMwk7PIbRetB0yfw-xjULbm3CNLNPBbnM6hIOWQeKkSfkR9OzXMQw6dwZsF-sJZBOk0p7KXU9LCaDQFZ5fom0E49h4RyM9RS8TRWLRxWfRSOOwXBv_gwarJRJDxMojmu-cxHm1_LAltj40p_A2fXx9eGKtpQLLeMwrZowQTiseGhVoqwIiE5SZVHHLx9YZm4bO8lBqonH5WBpH5C5QsaEcRjxVKhqfQZ_mbs8BDc-lzM04yyMqSaxIJbcqSwUPMmu0jIZw24U4-W5uzkg2dyTX8Usofkkdv0QNYdRlIWlXUZnQ2wkstZLhxU6DXcI-97mpVScj6Fertb2CveynKsrVdf3Z_AJ4qblQ
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonconforming+finite+element+method+for+data+assimilation+subject+to+the+transient+Stokes+problem&rft.jtitle=Numerische+Mathematik&rft.au=Burman%2C+Erik&rft.au=Garg+Deepika&rft.au=Preuss+Janosch&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=157&rft.issue=6&rft.spage=2017&rft.epage=2054&rft_id=info:doi/10.1007%2Fs00211-025-01500-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon