On hourly prediction of PM2.5 using spatial–temporal graph convolutional network
Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM 2.5 hourly prediction is an essential instrument for air protection because it can be utilized in developing air pollution prevention and control techniques and provides an early warning...
Gespeichert in:
| Veröffentlicht in: | Earth science informatics Jg. 18; H. 2; S. 402 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1865-0473, 1865-0481 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM
2.5
hourly prediction is an essential instrument for air protection because it can be utilized in developing air pollution prevention and control techniques and provides an early warning system for dangerous air pollutants. Conventional forecasting models are limited due to the extraction of spatial and spatiotemporal features between variables, emphasizing more on the temporal characteristics of the variables. Considering the spatiotemporal correlation of air pollution, we propose a novel hourly prediction model ICEEMDAN-SSA-VMD-ABSTGCN. Initially, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) approach is utilized for the decomposition of observed PM
2.5
concentrations. Variational mode decomposition (VMD) is then leveraged to further decompose the selected signals with the highest multi-scale permutation entropy (MPE) after its parameters have been optimized using the sparrow search algorithm (SSA). Next, an attention-based spatial–temporal graph convolutional network (ABSTGCN) was built by merging several effect factors, such as air pollution factors, and meteorological data. This methodology can be used for concentration forecasting of PM
2.5
in the future. |
|---|---|
| AbstractList | Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM
2.5
hourly prediction is an essential instrument for air protection because it can be utilized in developing air pollution prevention and control techniques and provides an early warning system for dangerous air pollutants. Conventional forecasting models are limited due to the extraction of spatial and spatiotemporal features between variables, emphasizing more on the temporal characteristics of the variables. Considering the spatiotemporal correlation of air pollution, we propose a novel hourly prediction model ICEEMDAN-SSA-VMD-ABSTGCN. Initially, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) approach is utilized for the decomposition of observed PM
2.5
concentrations. Variational mode decomposition (VMD) is then leveraged to further decompose the selected signals with the highest multi-scale permutation entropy (MPE) after its parameters have been optimized using the sparrow search algorithm (SSA). Next, an attention-based spatial–temporal graph convolutional network (ABSTGCN) was built by merging several effect factors, such as air pollution factors, and meteorological data. This methodology can be used for concentration forecasting of PM
2.5
in the future. Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM2.5 hourly prediction is an essential instrument for air protection because it can be utilized in developing air pollution prevention and control techniques and provides an early warning system for dangerous air pollutants. Conventional forecasting models are limited due to the extraction of spatial and spatiotemporal features between variables, emphasizing more on the temporal characteristics of the variables. Considering the spatiotemporal correlation of air pollution, we propose a novel hourly prediction model ICEEMDAN-SSA-VMD-ABSTGCN. Initially, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) approach is utilized for the decomposition of observed PM2.5 concentrations. Variational mode decomposition (VMD) is then leveraged to further decompose the selected signals with the highest multi-scale permutation entropy (MPE) after its parameters have been optimized using the sparrow search algorithm (SSA). Next, an attention-based spatial–temporal graph convolutional network (ABSTGCN) was built by merging several effect factors, such as air pollution factors, and meteorological data. This methodology can be used for concentration forecasting of PM2.5 in the future. |
| ArticleNumber | 402 |
| Author | Ren, Zhenxing Ji, Xinxin |
| Author_xml | – sequence: 1 givenname: Zhenxing surname: Ren fullname: Ren, Zhenxing email: renzhenxing@tyut.edu.cn, renzhenxing@tyut.edu.cn organization: College of Artificial Intelligence, Taiyuan University of Technology – sequence: 2 givenname: Xinxin surname: Ji fullname: Ji, Xinxin organization: Engineering Design Group Co., Ltd, Zhejiang University of Technology |
| BookMark | eNp9UMtOwzAQtBBIlNIf4GSJc4ofseMcUcVLKipCcLYc124DqR3sBNQb_8Af8iW4BMGNw2p3RzOj3TkC-847A8AJRlOMUHEWMcE5yxBJhUWJMrwHRljwtOYC7__OBT0EkxjrClFMOCVEjMD9wsG170OzhW0wy1p3tXfQW3h3S6YM9rF2Kxhb1dWq-Xz_6Mym9UE1cBVUu4bau1ff9DtNwpzp3nx4PgYHVjXRTH76GDxeXjzMrrP54upmdj7PNClIl1U5ZwpVjGmujCoR08JgrU3CciE0soIpZg1jlDHCl9QSazlStGK0LDWp6BicDr5t8C-9iZ18So-kQ6KkBDGeF6jgiUUGlg4-xmCsbEO9UWErMZK7-OQQn0zxye_4JE4iOohiIruVCX_W_6i-AIcDdb8 |
| Cites_doi | 10.1109/INMIC.2005.334494 10.1080/21642583.2019.1708830 10.1016/j.apr.2015.09.001 10.1016/j.knosys.2021.107416 10.1136/thoraxjnl-2013-204492 10.1016/j.atmosenv.2017.01.020 10.1007/s11869-019-00779-5 10.1016/j.scitotenv.2014.07.051 10.32604/csse.2022.023882 10.1016/j.neunet.2019.09.033 10.1016/j.eswa.2024.125959 10.1007/s11042-021-10852-w 10.1016/j.apr.2023.101731 10.1016/j.bspc.2014.06.009 10.1016/j.envsoft.2019.01.010 10.1007/s11063-024-11622-z 10.1016/j.ins.2024.121072 10.1016/j.scitotenv.2017.11.291 10.1016/j.envsoft.2019.104600 10.1016/j.jclepro.2021.127446 10.1016/j.atmosenv.2018.07.058 10.1016/j.scitotenv.2021.146870 10.3390/atmos15040418 10.1016/j.scitotenv.2022.156855 10.1016/j.envsoft.2023.105780 10.1016/j.jclepro.2018.06.068 10.1016/j.buildenv.2021.108436 10.1016/j.apr.2020.03.012 10.1016/j.atmosenv.2018.03.015 10.1016/j.atmosenv.2020.118021 10.1016/j.atmosenv.2024.120647 10.1016/j.asoc.2019.105972 10.1016/j.eswa.2022.118017 10.24963/ijcai.2018/505 10.5194/acp-10-121-2010 10.1109/Tbdata.2023.3277710 10.24963/ijcai.2019/264 10.1016/j.aei.2024.102651 10.1016/j.scitotenv.2019.135771 10.1016/j.scitotenv.2020.144221 10.1016/j.jhazmat.2017.07.050 10.1016/j.scitotenv.2019.01.333 10.1109/TSP.2013.2288675 10.1109/Tits.2019.2935152 10.1016/j.scitotenv.2019.05.288 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SC 7TG 8FD JQ2 KL. L7M L~C L~D |
| DOI | 10.1007/s12145-025-01890-1 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Meteorological & Geoastrophysical Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1865-0481 |
| ExternalDocumentID | 10_1007_s12145_025_01890_1 |
| GeographicLocations | Beijing China China |
| GeographicLocations_xml | – name: China – name: Beijing China |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shanxi Province, China grantid: 20210302123188 |
| GroupedDBID | 06D 0R~ 0VY 1N0 203 2JN 2KG 2~H 30V 4.4 406 408 40D 67M 67Z 6NX 8TC 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACGOD ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ATHPR AUKKA AXYYD AYFIA AYJHY B-. BENPR BHPHI CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 HCIFZ HF~ HG6 HMJXF HRMNR I0C IJ- IKXTQ IWAJR IXD IZQ J-C J0Z JBSCW JZLTJ KOV LLZTM NPVJJ NQJWS O93 O9J PT4 QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~02 ~A9 ~KM -Y2 2VQ 88I 8FE 8FG 8FH AARHV AAYXX ABULA ABUWG AEBTG AEUYN AFFHD AFGCZ AFKRA AHSBF AJBLW AZQEC BDATZ BGLVJ BGNMA BKSAR BPHCQ CAG CCPQU CITATION COF DWQXO EJD FINBP FSGXE GNUQQ H13 HZ~ K6V K7- L8X LK5 M2P M4Y M7R MK~ NU0 O9- P62 PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC Q2X 7SC 7TG 8FD JQ2 KL. L7M L~C L~D |
| ID | FETCH-LOGICAL-c272t-b465a0b55c6aea905c8e1ccea0b488c0f85a5fe5535526d3f2ff60a3b5399c2b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489587500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1865-0473 |
| IngestDate | Tue Dec 02 16:06:35 EST 2025 Sat Nov 29 07:33:06 EST 2025 Wed Jul 30 01:35:54 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Spatial–temporal graph convolutional network Attention mechanism Hourly prediction of air pollutants Empirical mode decomposition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-b465a0b55c6aea905c8e1ccea0b488c0f85a5fe5535526d3f2ff60a3b5399c2b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3205647076 |
| PQPubID | 54345 |
| ParticipantIDs | proquest_journals_3205647076 crossref_primary_10_1007_s12145_025_01890_1 springer_journals_10_1007_s12145_025_01890_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
| PublicationTitle | Earth science informatics |
| PublicationTitleAbbrev | Earth Sci Inform |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | A Alimissis (1890_CR1) 2018; 191 Y Qi (1890_CR22) 2019; 664 X Zhou (1890_CR48) 2024; 680 CL Wu (1890_CR27) 2022; 207 H Yang (1890_CR34) 2020; 87 G Zhou (1890_CR46) 2017; 153 W Yang (1890_CR35) 2018; 181 1890_CR31 1890_CR13 1890_CR16 Z Ren (1890_CR23) 2024; 46 A Sayeed (1890_CR25) 2020; 121 X Yang (1890_CR36) 2024; 14 1890_CR38 1890_CR37 H Chang-Hoi (1890_CR5) 2021; 245 1890_CR17 1890_CR39 C Paulpandi (1890_CR20) 2022; 43 F Wu (1890_CR28) 2023; 167 S Park (1890_CR19) 2018; 341 Q Zhou (1890_CR47) 2014; 496 LF Wu (1890_CR29) 2018; 196 R Xu (1890_CR32) 2021; 308 B Zhang (1890_CR43) 2022; 207 B Zhang (1890_CR42) 2020; 124 Y Huang (1890_CR14) 2021; 233 PJ García Nieto (1890_CR11) 2018; 621 ZX Ren (1890_CR24) 2023; 14 M Zhang (1890_CR44) 2021; 80 J Amanollahi (1890_CR2) 2019; 13 Q Wu (1890_CR30) 2019; 683 1890_CR7 1890_CR41 1890_CR4 K Dragomiretskiy (1890_CR9) 2014; 62 1890_CR45 L Hu (1890_CR12) 2021; 783 J Ma (1890_CR18) 2020; 705 S Poongadan (1890_CR21) 2024; 56 1890_CR26 M Dong (1890_CR8) 2024; 62 J Xue (1890_CR33) 2020; 8 M Elbayoumi (1890_CR10) 2015; 6 RW Atkinson (1890_CR3) 2014; 69 P Konopka (1890_CR15) 2009; 10 MA Colominas (1890_CR6) 2014; 14 YW Yu (1890_CR40) 2023; 9 |
| References_xml | – ident: 1890_CR4 doi: 10.1109/INMIC.2005.334494 – volume: 8 start-page: 22 year: 2020 ident: 1890_CR33 publication-title: Syst Sci Control Eng doi: 10.1080/21642583.2019.1708830 – volume: 6 start-page: 1013 year: 2015 ident: 1890_CR10 publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2015.09.001 – volume: 233 start-page: 107416 year: 2021 ident: 1890_CR14 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107416 – volume: 14 start-page: 28362 issue: 1 year: 2024 ident: 1890_CR36 publication-title: Sci Reports – volume: 69 start-page: 660 year: 2014 ident: 1890_CR3 publication-title: Thorax doi: 10.1136/thoraxjnl-2013-204492 – volume: 46 start-page: 9525 issue: 4 year: 2024 ident: 1890_CR23 publication-title: J Intell Fuzzy Syst – volume: 153 start-page: 94 year: 2017 ident: 1890_CR46 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2017.01.020 – volume: 13 start-page: 161 year: 2019 ident: 1890_CR2 publication-title: Air Qual Atmos Health doi: 10.1007/s11869-019-00779-5 – volume: 496 start-page: 264 year: 2014 ident: 1890_CR47 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2014.07.051 – volume: 43 start-page: 1341 year: 2022 ident: 1890_CR20 publication-title: Comput Syst Sci Eng doi: 10.32604/csse.2022.023882 – volume: 121 start-page: 396 year: 2020 ident: 1890_CR25 publication-title: Neural Netw : Official J Int Neural Netw Soc doi: 10.1016/j.neunet.2019.09.033 – ident: 1890_CR16 doi: 10.1016/j.eswa.2024.125959 – volume: 80 start-page: 24455 year: 2021 ident: 1890_CR44 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-10852-w – volume: 14 start-page: 101731 issue: 4 year: 2023 ident: 1890_CR24 publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2023.101731 – volume: 14 start-page: 19 year: 2014 ident: 1890_CR6 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.06.009 – ident: 1890_CR13 doi: 10.1016/j.envsoft.2019.01.010 – volume: 56 start-page: 164 issue: 3 year: 2024 ident: 1890_CR21 publication-title: Neural Process Lett doi: 10.1007/s11063-024-11622-z – volume: 680 start-page: 121072 year: 2024 ident: 1890_CR48 publication-title: Inf Sci doi: 10.1016/j.ins.2024.121072 – volume: 621 start-page: 753 year: 2018 ident: 1890_CR11 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.11.291 – volume: 124 start-page: 104600 year: 2020 ident: 1890_CR42 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2019.104600 – volume: 308 start-page: 127446 year: 2021 ident: 1890_CR32 publication-title: J Cleaner Product doi: 10.1016/j.jclepro.2021.127446 – volume: 191 start-page: 205 year: 2018 ident: 1890_CR1 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2018.07.058 – volume: 783 start-page: 146870 year: 2021 ident: 1890_CR12 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.146870 – ident: 1890_CR26 doi: 10.3390/atmos15040418 – ident: 1890_CR7 – ident: 1890_CR38 doi: 10.1016/j.scitotenv.2022.156855 – volume: 167 start-page: 105780 year: 2023 ident: 1890_CR28 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2023.105780 – volume: 196 start-page: 682 year: 2018 ident: 1890_CR29 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.06.068 – volume: 207 start-page: 108436 year: 2022 ident: 1890_CR27 publication-title: Building Environ doi: 10.1016/j.buildenv.2021.108436 – ident: 1890_CR37 doi: 10.1016/j.apr.2020.03.012 – volume: 181 start-page: 12 year: 2018 ident: 1890_CR35 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2018.03.015 – volume: 245 start-page: 118021 year: 2021 ident: 1890_CR5 publication-title: Atmospheric Environ doi: 10.1016/j.atmosenv.2020.118021 – ident: 1890_CR41 doi: 10.1016/j.atmosenv.2024.120647 – volume: 87 start-page: 105972 year: 2020 ident: 1890_CR34 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105972 – volume: 207 start-page: 118017 year: 2022 ident: 1890_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118017 – ident: 1890_CR39 doi: 10.24963/ijcai.2018/505 – volume: 10 start-page: 121 year: 2009 ident: 1890_CR15 publication-title: Atmos Chem Phys doi: 10.5194/acp-10-121-2010 – volume: 9 start-page: 1347 issue: 5 year: 2023 ident: 1890_CR40 publication-title: IEEE Trans Big Data doi: 10.1109/Tbdata.2023.3277710 – ident: 1890_CR31 doi: 10.24963/ijcai.2019/264 – volume: 62 start-page: 102651 year: 2024 ident: 1890_CR8 publication-title: Adv Eng Informatics doi: 10.1016/j.aei.2024.102651 – volume: 705 start-page: 135771 year: 2020 ident: 1890_CR18 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135771 – ident: 1890_CR17 doi: 10.1016/j.scitotenv.2020.144221 – volume: 341 start-page: 75 year: 2018 ident: 1890_CR19 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2017.07.050 – volume: 664 start-page: 1 year: 2019 ident: 1890_CR22 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.01.333 – volume: 62 start-page: 531 year: 2014 ident: 1890_CR9 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2288675 – ident: 1890_CR45 doi: 10.1109/Tits.2019.2935152 – volume: 683 start-page: 808 year: 2019 ident: 1890_CR30 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.05.288 |
| SSID | ssib031263228 ssj0062140 |
| Score | 2.320984 |
| Snippet | Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM
2.5
hourly prediction is an essential... Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM2.5 hourly prediction is an essential... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 402 |
| SubjectTerms | Air pollution Artificial neural networks Decomposition Early warning systems Earth and Environmental Science Earth Sciences Earth System Sciences Forecasting Forecasting models Information Systems Applications (incl.Internet) Meteorological data Ontology Particulate matter Permutations Pollution prevention Prediction models Search algorithms Simulation and Modeling Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics |
| Title | On hourly prediction of PM2.5 using spatial–temporal graph convolutional network |
| URI | https://link.springer.com/article/10.1007/s12145-025-01890-1 https://www.proquest.com/docview/3205647076 |
| Volume | 18 |
| WOSCitedRecordID | wos001489587500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1865-0481 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062140 issn: 1865-0473 databaseCode: RSV dateStart: 20080401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQAYmFN6JQkAc2CHL8SjIiRGEBqvJQt8h2bECq0qopSN34D_xDfgm261CBYIDVcZzo813unLv7DoADZqg1Q0xEaZEye0AhSSQ5UlFBKBdEu9AT9c0mkqurtNfLOqEorKqz3euQpP9Sz4rdHKl25NqvojjNUGTPPPP2OalTx-7NfS1FJHYU5PgzlsBxKItMub2TJiSUzvy85lfzNPM5v4VJvfVpr_zvvVfBcvA24clUPNbAnC7XweK57-Y72QDd6xI-2jn9CRyOXMTG7RIcGNi5xMcMupz4B1i5nGvRf399CzRWfehZrqFLWA-Ca8fKaT75Jrhrn92eXkShyUKkcILHkaScCSQZU1xokSGmUh0rpe2Y1W2FTMoEM5ox65hgXhCDjeFIEOkobRWWZAs0ykGptwEUXAqKCs5UISlSPDNUYMmxSAxhOhZNcFhjmw-nXBr5jDXZoZRblHKPUh43QauGPw96VeUEW4eNJijhTXBUwz27_PtqO3-bvguWsN8x97ulBRrj0bPeAwvqZfxUjfa9vH0AcB_N-Q |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsMwELRQAcGFN6JQwAduEOT4leSIEKWItlSloN4ix7EBqUqrpiD1xj_wh3wJdpoQgeAAVyexovE6u87OzgJwxDQ1bogJx499Zg4oxHMijqQTE8oFUTb1RLNmE1677ff7QScvCksLtnuRksy-1GWxmxXVdmz7VeT6AXLMmWeeGo9liXzd2_vCiohrJcjxZy6B47ws0ufmSeqRvHTm5zm_uqcy5vyWJs28T331f--9BlbyaBOezcxjHcypZAMsXmbdfKeboHuTwEdzz2AKR2ObsbGrBIcadlr4lEHLiX-AqeVci8H761suYzWAmco1tIT13HDNWDLjk2-Bu_pF77zh5E0WHIk9PHEiyplAEWOSCyUCxKSvXCmVGTN7WyLtM8G0YswEJpjHRGOtORIkspK2EkdkG1SSYaJ2ABQ8EhTFnMk4okjyQFOBI46FpwlTrqiC4wLbcDTT0ghL1WSLUmhQCjOUQrcKagX8Yb6v0pBgE7BRD3m8Ck4KuMvLv8-2-7fbD8FSo9dqhs2r9vUeWMbZ6tlfLzVQmYyf1T5YkC-Tp3R8kNneByF20N0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQWcSFHVEo4AM3CDjekhwRUEBAqdjUW-Q4NiBVadUGpN74B_6QL8HOQgDBAXF1HEuZGWtmMm_eALDFNDVuiAnHj31mEhTiORFH0okJ5YIoW3qi2bAJr9XyO52g_amLP0O7lyXJvKfBsjQl6V4_1ntV45sl2HbsKFbk-gFyTP4zTu3QIJuvX9-VFkVcS0eOP-oKHBctkj43b1KPFG00P5_51VVV8ee3kmnmiZqz__-GOTBTRKFwPzebeTCmkgUweZxN-R0tgqvLBD6YPd0R7A9sJcdqD_Y0bF_gXQYtVv4eDi0WW3TfXl4LeqsuzNivoQWyFwZt1pIcZ74EbptHNwcnTjF8wZHYw6kTUc4EihiTXCgRICZ95UqpzJq58xJpnwmmFWMmYME8JhprzZEgkaW6lTgiy6CW9BK1AqDgkaAo5kzGEUWSB5oKHHEsPE2YckUdbJdyDvs5x0ZYsSlbKYVGSmEmpdCtg0apirC4b8OQYBPIUQ95vA52StFXj38_bfVv2zfBVPuwGZ6fts7WwDTOlGf_yDRALR08qXUwIZ_Tx-FgIzPDd9tO2cE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+hourly+prediction+of+PM2.5+using+spatial%E2%80%93temporal+graph+convolutional+network&rft.jtitle=Earth+science+informatics&rft.au=Ren%2C+Zhenxing&rft.au=Ji%2C+Xinxin&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1865-0473&rft.eissn=1865-0481&rft.volume=18&rft.issue=2&rft.spage=402&rft_id=info:doi/10.1007%2Fs12145-025-01890-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0473&client=summon |