On hourly prediction of PM2.5 using spatial–temporal graph convolutional network

Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM 2.5 hourly prediction is an essential instrument for air protection because it can be utilized in developing air pollution prevention and control techniques and provides an early warning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth science informatics Jg. 18; H. 2; S. 402
Hauptverfasser: Ren, Zhenxing, Ji, Xinxin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2025
Springer Nature B.V
Schlagworte:
ISSN:1865-0473, 1865-0481
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM 2.5 hourly prediction is an essential instrument for air protection because it can be utilized in developing air pollution prevention and control techniques and provides an early warning system for dangerous air pollutants. Conventional forecasting models are limited due to the extraction of spatial and spatiotemporal features between variables, emphasizing more on the temporal characteristics of the variables. Considering the spatiotemporal correlation of air pollution, we propose a novel hourly prediction model ICEEMDAN-SSA-VMD-ABSTGCN. Initially, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) approach is utilized for the decomposition of observed PM 2.5 concentrations. Variational mode decomposition (VMD) is then leveraged to further decompose the selected signals with the highest multi-scale permutation entropy (MPE) after its parameters have been optimized using the sparrow search algorithm (SSA). Next, an attention-based spatial–temporal graph convolutional network (ABSTGCN) was built by merging several effect factors, such as air pollution factors, and meteorological data. This methodology can be used for concentration forecasting of PM 2.5 in the future.
AbstractList Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM 2.5 hourly prediction is an essential instrument for air protection because it can be utilized in developing air pollution prevention and control techniques and provides an early warning system for dangerous air pollutants. Conventional forecasting models are limited due to the extraction of spatial and spatiotemporal features between variables, emphasizing more on the temporal characteristics of the variables. Considering the spatiotemporal correlation of air pollution, we propose a novel hourly prediction model ICEEMDAN-SSA-VMD-ABSTGCN. Initially, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) approach is utilized for the decomposition of observed PM 2.5 concentrations. Variational mode decomposition (VMD) is then leveraged to further decompose the selected signals with the highest multi-scale permutation entropy (MPE) after its parameters have been optimized using the sparrow search algorithm (SSA). Next, an attention-based spatial–temporal graph convolutional network (ABSTGCN) was built by merging several effect factors, such as air pollution factors, and meteorological data. This methodology can be used for concentration forecasting of PM 2.5 in the future.
Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM2.5 hourly prediction is an essential instrument for air protection because it can be utilized in developing air pollution prevention and control techniques and provides an early warning system for dangerous air pollutants. Conventional forecasting models are limited due to the extraction of spatial and spatiotemporal features between variables, emphasizing more on the temporal characteristics of the variables. Considering the spatiotemporal correlation of air pollution, we propose a novel hourly prediction model ICEEMDAN-SSA-VMD-ABSTGCN. Initially, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) approach is utilized for the decomposition of observed PM2.5 concentrations. Variational mode decomposition (VMD) is then leveraged to further decompose the selected signals with the highest multi-scale permutation entropy (MPE) after its parameters have been optimized using the sparrow search algorithm (SSA). Next, an attention-based spatial–temporal graph convolutional network (ABSTGCN) was built by merging several effect factors, such as air pollution factors, and meteorological data. This methodology can be used for concentration forecasting of PM2.5 in the future.
ArticleNumber 402
Author Ren, Zhenxing
Ji, Xinxin
Author_xml – sequence: 1
  givenname: Zhenxing
  surname: Ren
  fullname: Ren, Zhenxing
  email: renzhenxing@tyut.edu.cn, renzhenxing@tyut.edu.cn
  organization: College of Artificial Intelligence, Taiyuan University of Technology
– sequence: 2
  givenname: Xinxin
  surname: Ji
  fullname: Ji, Xinxin
  organization: Engineering Design Group Co., Ltd, Zhejiang University of Technology
BookMark eNp9UMtOwzAQtBBIlNIf4GSJc4ofseMcUcVLKipCcLYc124DqR3sBNQb_8Af8iW4BMGNw2p3RzOj3TkC-847A8AJRlOMUHEWMcE5yxBJhUWJMrwHRljwtOYC7__OBT0EkxjrClFMOCVEjMD9wsG170OzhW0wy1p3tXfQW3h3S6YM9rF2Kxhb1dWq-Xz_6Mym9UE1cBVUu4bau1ff9DtNwpzp3nx4PgYHVjXRTH76GDxeXjzMrrP54upmdj7PNClIl1U5ZwpVjGmujCoR08JgrU3CciE0soIpZg1jlDHCl9QSazlStGK0LDWp6BicDr5t8C-9iZ18So-kQ6KkBDGeF6jgiUUGlg4-xmCsbEO9UWErMZK7-OQQn0zxye_4JE4iOohiIruVCX_W_6i-AIcDdb8
Cites_doi 10.1109/INMIC.2005.334494
10.1080/21642583.2019.1708830
10.1016/j.apr.2015.09.001
10.1016/j.knosys.2021.107416
10.1136/thoraxjnl-2013-204492
10.1016/j.atmosenv.2017.01.020
10.1007/s11869-019-00779-5
10.1016/j.scitotenv.2014.07.051
10.32604/csse.2022.023882
10.1016/j.neunet.2019.09.033
10.1016/j.eswa.2024.125959
10.1007/s11042-021-10852-w
10.1016/j.apr.2023.101731
10.1016/j.bspc.2014.06.009
10.1016/j.envsoft.2019.01.010
10.1007/s11063-024-11622-z
10.1016/j.ins.2024.121072
10.1016/j.scitotenv.2017.11.291
10.1016/j.envsoft.2019.104600
10.1016/j.jclepro.2021.127446
10.1016/j.atmosenv.2018.07.058
10.1016/j.scitotenv.2021.146870
10.3390/atmos15040418
10.1016/j.scitotenv.2022.156855
10.1016/j.envsoft.2023.105780
10.1016/j.jclepro.2018.06.068
10.1016/j.buildenv.2021.108436
10.1016/j.apr.2020.03.012
10.1016/j.atmosenv.2018.03.015
10.1016/j.atmosenv.2020.118021
10.1016/j.atmosenv.2024.120647
10.1016/j.asoc.2019.105972
10.1016/j.eswa.2022.118017
10.24963/ijcai.2018/505
10.5194/acp-10-121-2010
10.1109/Tbdata.2023.3277710
10.24963/ijcai.2019/264
10.1016/j.aei.2024.102651
10.1016/j.scitotenv.2019.135771
10.1016/j.scitotenv.2020.144221
10.1016/j.jhazmat.2017.07.050
10.1016/j.scitotenv.2019.01.333
10.1109/TSP.2013.2288675
10.1109/Tits.2019.2935152
10.1016/j.scitotenv.2019.05.288
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
7TG
8FD
JQ2
KL.
L7M
L~C
L~D
DOI 10.1007/s12145-025-01890-1
DatabaseName CrossRef
Computer and Information Systems Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1865-0481
ExternalDocumentID 10_1007_s12145_025_01890_1
GeographicLocations Beijing China
China
GeographicLocations_xml – name: China
– name: Beijing China
GrantInformation_xml – fundername: Natural Science Foundation of Shanxi Province, China
  grantid: 20210302123188
GroupedDBID 06D
0R~
0VY
1N0
203
2JN
2KG
2~H
30V
4.4
406
408
40D
67M
67Z
6NX
8TC
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ATHPR
AUKKA
AXYYD
AYFIA
AYJHY
B-.
BENPR
BHPHI
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
HCIFZ
HF~
HG6
HMJXF
HRMNR
I0C
IJ-
IKXTQ
IWAJR
IXD
IZQ
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O93
O9J
PT4
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~02
~A9
~KM
-Y2
2VQ
88I
8FE
8FG
8FH
AARHV
AAYXX
ABULA
ABUWG
AEBTG
AEUYN
AFFHD
AFGCZ
AFKRA
AHSBF
AJBLW
AZQEC
BDATZ
BGLVJ
BGNMA
BKSAR
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FINBP
FSGXE
GNUQQ
H13
HZ~
K6V
K7-
L8X
LK5
M2P
M4Y
M7R
MK~
NU0
O9-
P62
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
Q2X
7SC
7TG
8FD
JQ2
KL.
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-b465a0b55c6aea905c8e1ccea0b488c0f85a5fe5535526d3f2ff60a3b5399c2b3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489587500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1865-0473
IngestDate Tue Dec 02 16:06:35 EST 2025
Sat Nov 29 07:33:06 EST 2025
Wed Jul 30 01:35:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Spatial–temporal graph convolutional network
Attention mechanism
Hourly prediction of air pollutants
Empirical mode decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-b465a0b55c6aea905c8e1ccea0b488c0f85a5fe5535526d3f2ff60a3b5399c2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3205647076
PQPubID 54345
ParticipantIDs proquest_journals_3205647076
crossref_primary_10_1007_s12145_025_01890_1
springer_journals_10_1007_s12145_025_01890_1
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Earth science informatics
PublicationTitleAbbrev Earth Sci Inform
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References A Alimissis (1890_CR1) 2018; 191
Y Qi (1890_CR22) 2019; 664
X Zhou (1890_CR48) 2024; 680
CL Wu (1890_CR27) 2022; 207
H Yang (1890_CR34) 2020; 87
G Zhou (1890_CR46) 2017; 153
W Yang (1890_CR35) 2018; 181
1890_CR31
1890_CR13
1890_CR16
Z Ren (1890_CR23) 2024; 46
A Sayeed (1890_CR25) 2020; 121
X Yang (1890_CR36) 2024; 14
1890_CR38
1890_CR37
H Chang-Hoi (1890_CR5) 2021; 245
1890_CR17
1890_CR39
C Paulpandi (1890_CR20) 2022; 43
F Wu (1890_CR28) 2023; 167
S Park (1890_CR19) 2018; 341
Q Zhou (1890_CR47) 2014; 496
LF Wu (1890_CR29) 2018; 196
R Xu (1890_CR32) 2021; 308
B Zhang (1890_CR43) 2022; 207
B Zhang (1890_CR42) 2020; 124
Y Huang (1890_CR14) 2021; 233
PJ García Nieto (1890_CR11) 2018; 621
ZX Ren (1890_CR24) 2023; 14
M Zhang (1890_CR44) 2021; 80
J Amanollahi (1890_CR2) 2019; 13
Q Wu (1890_CR30) 2019; 683
1890_CR7
1890_CR41
1890_CR4
K Dragomiretskiy (1890_CR9) 2014; 62
1890_CR45
L Hu (1890_CR12) 2021; 783
J Ma (1890_CR18) 2020; 705
S Poongadan (1890_CR21) 2024; 56
1890_CR26
M Dong (1890_CR8) 2024; 62
J Xue (1890_CR33) 2020; 8
M Elbayoumi (1890_CR10) 2015; 6
RW Atkinson (1890_CR3) 2014; 69
P Konopka (1890_CR15) 2009; 10
MA Colominas (1890_CR6) 2014; 14
YW Yu (1890_CR40) 2023; 9
References_xml – ident: 1890_CR4
  doi: 10.1109/INMIC.2005.334494
– volume: 8
  start-page: 22
  year: 2020
  ident: 1890_CR33
  publication-title: Syst Sci Control Eng
  doi: 10.1080/21642583.2019.1708830
– volume: 6
  start-page: 1013
  year: 2015
  ident: 1890_CR10
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2015.09.001
– volume: 233
  start-page: 107416
  year: 2021
  ident: 1890_CR14
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107416
– volume: 14
  start-page: 28362
  issue: 1
  year: 2024
  ident: 1890_CR36
  publication-title: Sci Reports
– volume: 69
  start-page: 660
  year: 2014
  ident: 1890_CR3
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2013-204492
– volume: 46
  start-page: 9525
  issue: 4
  year: 2024
  ident: 1890_CR23
  publication-title: J Intell Fuzzy Syst
– volume: 153
  start-page: 94
  year: 2017
  ident: 1890_CR46
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2017.01.020
– volume: 13
  start-page: 161
  year: 2019
  ident: 1890_CR2
  publication-title: Air Qual Atmos Health
  doi: 10.1007/s11869-019-00779-5
– volume: 496
  start-page: 264
  year: 2014
  ident: 1890_CR47
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2014.07.051
– volume: 43
  start-page: 1341
  year: 2022
  ident: 1890_CR20
  publication-title: Comput Syst Sci Eng
  doi: 10.32604/csse.2022.023882
– volume: 121
  start-page: 396
  year: 2020
  ident: 1890_CR25
  publication-title: Neural Netw : Official J Int Neural Netw Soc
  doi: 10.1016/j.neunet.2019.09.033
– ident: 1890_CR16
  doi: 10.1016/j.eswa.2024.125959
– volume: 80
  start-page: 24455
  year: 2021
  ident: 1890_CR44
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-10852-w
– volume: 14
  start-page: 101731
  issue: 4
  year: 2023
  ident: 1890_CR24
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2023.101731
– volume: 14
  start-page: 19
  year: 2014
  ident: 1890_CR6
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.06.009
– ident: 1890_CR13
  doi: 10.1016/j.envsoft.2019.01.010
– volume: 56
  start-page: 164
  issue: 3
  year: 2024
  ident: 1890_CR21
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-024-11622-z
– volume: 680
  start-page: 121072
  year: 2024
  ident: 1890_CR48
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2024.121072
– volume: 621
  start-page: 753
  year: 2018
  ident: 1890_CR11
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.11.291
– volume: 124
  start-page: 104600
  year: 2020
  ident: 1890_CR42
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2019.104600
– volume: 308
  start-page: 127446
  year: 2021
  ident: 1890_CR32
  publication-title: J Cleaner Product
  doi: 10.1016/j.jclepro.2021.127446
– volume: 191
  start-page: 205
  year: 2018
  ident: 1890_CR1
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2018.07.058
– volume: 783
  start-page: 146870
  year: 2021
  ident: 1890_CR12
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.146870
– ident: 1890_CR26
  doi: 10.3390/atmos15040418
– ident: 1890_CR7
– ident: 1890_CR38
  doi: 10.1016/j.scitotenv.2022.156855
– volume: 167
  start-page: 105780
  year: 2023
  ident: 1890_CR28
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2023.105780
– volume: 196
  start-page: 682
  year: 2018
  ident: 1890_CR29
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.06.068
– volume: 207
  start-page: 108436
  year: 2022
  ident: 1890_CR27
  publication-title: Building Environ
  doi: 10.1016/j.buildenv.2021.108436
– ident: 1890_CR37
  doi: 10.1016/j.apr.2020.03.012
– volume: 181
  start-page: 12
  year: 2018
  ident: 1890_CR35
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2018.03.015
– volume: 245
  start-page: 118021
  year: 2021
  ident: 1890_CR5
  publication-title: Atmospheric Environ
  doi: 10.1016/j.atmosenv.2020.118021
– ident: 1890_CR41
  doi: 10.1016/j.atmosenv.2024.120647
– volume: 87
  start-page: 105972
  year: 2020
  ident: 1890_CR34
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105972
– volume: 207
  start-page: 118017
  year: 2022
  ident: 1890_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118017
– ident: 1890_CR39
  doi: 10.24963/ijcai.2018/505
– volume: 10
  start-page: 121
  year: 2009
  ident: 1890_CR15
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-10-121-2010
– volume: 9
  start-page: 1347
  issue: 5
  year: 2023
  ident: 1890_CR40
  publication-title: IEEE Trans Big Data
  doi: 10.1109/Tbdata.2023.3277710
– ident: 1890_CR31
  doi: 10.24963/ijcai.2019/264
– volume: 62
  start-page: 102651
  year: 2024
  ident: 1890_CR8
  publication-title: Adv Eng Informatics
  doi: 10.1016/j.aei.2024.102651
– volume: 705
  start-page: 135771
  year: 2020
  ident: 1890_CR18
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135771
– ident: 1890_CR17
  doi: 10.1016/j.scitotenv.2020.144221
– volume: 341
  start-page: 75
  year: 2018
  ident: 1890_CR19
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2017.07.050
– volume: 664
  start-page: 1
  year: 2019
  ident: 1890_CR22
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.01.333
– volume: 62
  start-page: 531
  year: 2014
  ident: 1890_CR9
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2288675
– ident: 1890_CR45
  doi: 10.1109/Tits.2019.2935152
– volume: 683
  start-page: 808
  year: 2019
  ident: 1890_CR30
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.05.288
SSID ssib031263228
ssj0062140
Score 2.320984
Snippet Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM 2.5 hourly prediction is an essential...
Globally, air pollution has garnered significant attention in the past few years. Accurate air pollution like PM2.5 hourly prediction is an essential...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 402
SubjectTerms Air pollution
Artificial neural networks
Decomposition
Early warning systems
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Forecasting
Forecasting models
Information Systems Applications (incl.Internet)
Meteorological data
Ontology
Particulate matter
Permutations
Pollution prevention
Prediction models
Search algorithms
Simulation and Modeling
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Title On hourly prediction of PM2.5 using spatial–temporal graph convolutional network
URI https://link.springer.com/article/10.1007/s12145-025-01890-1
https://www.proquest.com/docview/3205647076
Volume 18
WOSCitedRecordID wos001489587500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1865-0481
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062140
  issn: 1865-0473
  databaseCode: RSV
  dateStart: 20080401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQAYmFN6JQkAc2CHL8SjIiRGEBqvJQt8h2bECq0qopSN34D_xDfgm261CBYIDVcZzo813unLv7DoADZqg1Q0xEaZEye0AhSSQ5UlFBKBdEu9AT9c0mkqurtNfLOqEorKqz3euQpP9Sz4rdHKl25NqvojjNUGTPPPP2OalTx-7NfS1FJHYU5PgzlsBxKItMub2TJiSUzvy85lfzNPM5v4VJvfVpr_zvvVfBcvA24clUPNbAnC7XweK57-Y72QDd6xI-2jn9CRyOXMTG7RIcGNi5xMcMupz4B1i5nGvRf399CzRWfehZrqFLWA-Ca8fKaT75Jrhrn92eXkShyUKkcILHkaScCSQZU1xokSGmUh0rpe2Y1W2FTMoEM5ox65hgXhCDjeFIEOkobRWWZAs0ykGptwEUXAqKCs5UISlSPDNUYMmxSAxhOhZNcFhjmw-nXBr5jDXZoZRblHKPUh43QauGPw96VeUEW4eNJijhTXBUwz27_PtqO3-bvguWsN8x97ulBRrj0bPeAwvqZfxUjfa9vH0AcB_N-Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsMwELRQAcGFN6JQwAduEOT4leSIEKWItlSloN4ix7EBqUqrpiD1xj_wh3wJdpoQgeAAVyexovE6u87OzgJwxDQ1bogJx499Zg4oxHMijqQTE8oFUTb1RLNmE1677ff7QScvCksLtnuRksy-1GWxmxXVdmz7VeT6AXLMmWeeGo9liXzd2_vCiohrJcjxZy6B47ws0ufmSeqRvHTm5zm_uqcy5vyWJs28T331f--9BlbyaBOezcxjHcypZAMsXmbdfKeboHuTwEdzz2AKR2ObsbGrBIcadlr4lEHLiX-AqeVci8H761suYzWAmco1tIT13HDNWDLjk2-Bu_pF77zh5E0WHIk9PHEiyplAEWOSCyUCxKSvXCmVGTN7WyLtM8G0YswEJpjHRGOtORIkspK2EkdkG1SSYaJ2ABQ8EhTFnMk4okjyQFOBI46FpwlTrqiC4wLbcDTT0ghL1WSLUmhQCjOUQrcKagX8Yb6v0pBgE7BRD3m8Ck4KuMvLv8-2-7fbD8FSo9dqhs2r9vUeWMbZ6tlfLzVQmYyf1T5YkC-Tp3R8kNneByF20N0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQWcSFHVEo4AM3CDjekhwRUEBAqdjUW-Q4NiBVadUGpN74B_6QL8HOQgDBAXF1HEuZGWtmMm_eALDFNDVuiAnHj31mEhTiORFH0okJ5YIoW3qi2bAJr9XyO52g_amLP0O7lyXJvKfBsjQl6V4_1ntV45sl2HbsKFbk-gFyTP4zTu3QIJuvX9-VFkVcS0eOP-oKHBctkj43b1KPFG00P5_51VVV8ee3kmnmiZqz__-GOTBTRKFwPzebeTCmkgUweZxN-R0tgqvLBD6YPd0R7A9sJcdqD_Y0bF_gXQYtVv4eDi0WW3TfXl4LeqsuzNivoQWyFwZt1pIcZ74EbptHNwcnTjF8wZHYw6kTUc4EihiTXCgRICZ95UqpzJq58xJpnwmmFWMmYME8JhprzZEgkaW6lTgiy6CW9BK1AqDgkaAo5kzGEUWSB5oKHHEsPE2YckUdbJdyDvs5x0ZYsSlbKYVGSmEmpdCtg0apirC4b8OQYBPIUQ95vA52StFXj38_bfVv2zfBVPuwGZ6fts7WwDTOlGf_yDRALR08qXUwIZ_Tx-FgIzPDd9tO2cE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+hourly+prediction+of+PM2.5+using+spatial%E2%80%93temporal+graph+convolutional+network&rft.jtitle=Earth+science+informatics&rft.au=Ren%2C+Zhenxing&rft.au=Ji%2C+Xinxin&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1865-0473&rft.eissn=1865-0481&rft.volume=18&rft.issue=2&rft.spage=402&rft_id=info:doi/10.1007%2Fs12145-025-01890-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0473&client=summon