Joint optimization of energy harvesting and data transmission in SWIPT-enabled hybrid precoding mmWave massive MIMO-NOMA systems
The integration of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with non-orthogonal multiple access (NOMA) significantly enhances spectral efficiency, a critical advancement for fifth-generation (5G) and beyond networks. Energy-constrained devices can harvest energy...
Saved in:
| Published in: | Cluster computing Vol. 28; no. 8; p. 532 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.09.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1386-7857, 1573-7543 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The integration of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with non-orthogonal multiple access (NOMA) significantly enhances spectral efficiency, a critical advancement for fifth-generation (5G) and beyond networks. Energy-constrained devices can harvest energy while decoding information through integrating simultaneous wireless information and power transfer (SWIPT), significantly enhancing overall energy efficiency. However, this integration introduces a fundamental trade-off between energy harvesting and data transmission rates, presenting a critical optimization challenge. This paper explores the intricate trade-off between these two objectives in SWIPT-enabled mmWave massive MIMO-NOMA systems. A joint optimization framework is proposed for power allocation and power splitting (PS) control, aimed at maximizing both harvested energy and total transmission rate while ensuring that user equipment (UE) meets predefined energy and rate thresholds. To address the conflicting objectives, a novel performance metric, termed total achievable throughput (
), is introduced, which combines the throughput transformed from harvested energy and data transmission rate. The resulting multi-objective optimization problem is reformulated into a single-objective
optimization problem. To solve this optimization problem, an initial selecting cluster-head (SCH) and user grouping algorithm is proposed. This algorithm identifies a cluster head for each beam and organizes UEs into groups based on normalized channel correlation. An analog radio-frequency (RF) precoder is then designed for the selected user groups, followed by a digital baseband precoder to minimize inter-beam interference and maximize
. The nonconvex optimization problem is then separated into two convex sub-problems, which are addressed iteratively. Both independent and equal PS scenarios are explored. Simulation results validate the proposed algorithms, demonstrating substantial improvements in energy efficiency and
compared to conventional SWIPT-enabled mmWave MIMO-orthogonal multiple access (OMA) systems. |
|---|---|
| AbstractList | The integration of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with non-orthogonal multiple access (NOMA) significantly enhances spectral efficiency, a critical advancement for fifth-generation (5G) and beyond networks. Energy-constrained devices can harvest energy while decoding information through integrating simultaneous wireless information and power transfer (SWIPT), significantly enhancing overall energy efficiency. However, this integration introduces a fundamental trade-off between energy harvesting and data transmission rates, presenting a critical optimization challenge. This paper explores the intricate trade-off between these two objectives in SWIPT-enabled mmWave massive MIMO-NOMA systems. A joint optimization framework is proposed for power allocation and power splitting (PS) control, aimed at maximizing both harvested energy and total transmission rate while ensuring that user equipment (UE) meets predefined energy and rate thresholds. To address the conflicting objectives, a novel performance metric, termed total achievable throughput (
), is introduced, which combines the throughput transformed from harvested energy and data transmission rate. The resulting multi-objective optimization problem is reformulated into a single-objective
optimization problem. To solve this optimization problem, an initial selecting cluster-head (SCH) and user grouping algorithm is proposed. This algorithm identifies a cluster head for each beam and organizes UEs into groups based on normalized channel correlation. An analog radio-frequency (RF) precoder is then designed for the selected user groups, followed by a digital baseband precoder to minimize inter-beam interference and maximize
. The nonconvex optimization problem is then separated into two convex sub-problems, which are addressed iteratively. Both independent and equal PS scenarios are explored. Simulation results validate the proposed algorithms, demonstrating substantial improvements in energy efficiency and
compared to conventional SWIPT-enabled mmWave MIMO-orthogonal multiple access (OMA) systems. The integration of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with non-orthogonal multiple access (NOMA) significantly enhances spectral efficiency, a critical advancement for fifth-generation (5G) and beyond networks. Energy-constrained devices can harvest energy while decoding information through integrating simultaneous wireless information and power transfer (SWIPT), significantly enhancing overall energy efficiency. However, this integration introduces a fundamental trade-off between energy harvesting and data transmission rates, presenting a critical optimization challenge. This paper explores the intricate trade-off between these two objectives in SWIPT-enabled mmWave massive MIMO-NOMA systems. A joint optimization framework is proposed for power allocation and power splitting (PS) control, aimed at maximizing both harvested energy and total transmission rate while ensuring that user equipment (UE) meets predefined energy and rate thresholds. To address the conflicting objectives, a novel performance metric, termed total achievable throughput (), is introduced, which combines the throughput transformed from harvested energy and data transmission rate. The resulting multi-objective optimization problem is reformulated into a single-objective optimization problem. To solve this optimization problem, an initial selecting cluster-head (SCH) and user grouping algorithm is proposed. This algorithm identifies a cluster head for each beam and organizes UEs into groups based on normalized channel correlation. An analog radio-frequency (RF) precoder is then designed for the selected user groups, followed by a digital baseband precoder to minimize inter-beam interference and maximize . The nonconvex optimization problem is then separated into two convex sub-problems, which are addressed iteratively. Both independent and equal PS scenarios are explored. Simulation results validate the proposed algorithms, demonstrating substantial improvements in energy efficiency and compared to conventional SWIPT-enabled mmWave MIMO-orthogonal multiple access (OMA) systems. |
| ArticleNumber | 532 |
| Author | Shukry, Suzan Ghamry, Walid K. |
| Author_xml | – sequence: 1 givenname: Walid K. surname: Ghamry fullname: Ghamry, Walid K. email: wkamal@bu.edu.sa organization: Computer Engineering, Faculty of Engineering, Al-Baha University, Information Systems Engineering Department, National Research Center – sequence: 2 givenname: Suzan surname: Shukry fullname: Shukry, Suzan organization: Higher Technological Institute |
| BookMark | eNp9kMtKAzEUhoMoeH0BVwHX0Vwmk86yiJeKtYKVLkNm5kyNdJKaTAvjykc3dQR3rv4D-b8TzneM9p13gNA5o5eMUnUVGZWjnFAuCZUy40TsoSMmlSBKZmI_zSI9q5FUh-g4xndKaaF4cYS-Hrx1Hfbrzrb203TWO-wbDA7CssdvJmwhdtYtsXE1rk1ncBeMi62NcVe1Dr8sJs9zAs6UK6jxW18GW-N1gMrXO65tF2YLuDUJSDmdTGfkaTYd49jHDtp4ig4as4pw9psn6PX2Zn59Tx5nd5Pr8SOpuOIdKWlRM2nKEc0zyFitjKhorUSZG-AF5DmIRkqQTDYNlWW6tslzkykhyqaoUp6gi2HvOviPTTpKv_tNcOlLLXiW9HHGstTiQ6sKPsYAjV4H25rQa0b1zrQeTOtkWv-Y1iJBYoBiKrslhL_V_1DfCfuEMg |
| Cites_doi | 10.3390/electronics9010032 10.1109/ACCESS.2020.3013305 10.1109/MCOM.2014.6957150 10.1109/ACCESS.2017.2671903 10.3390/telecom5030042 10.1109/ACCESS.2022.3155485 10.3390/s23125516 10.1109/JSEN.2021.3076517 10.1109/TWC.2023.3326518 10.1109/ACCESS.2021.3060836 10.1109/TWC.2014.011714.130846 10.1109/TVT.2022.3153323 10.1017/CBO9780511804441 10.1109/TVT.2021.3057648 10.1109/LWC.2020.3037750 10.1002/ett.4740 10.1109/TVT.2018.2819682 10.1109/ISIT.2008.4595260 10.1109/TVT.2025.3534021 10.1109/ICC.2017.7997065 10.1007/s11277-023-10845-y 10.1109/ACCESS.2023.3263548 10.1016/j.phycom.2021.101469 10.1109/TWC.2017.2671869 10.1109/TVT.2023.3293988 10.1109/MSP.2014.2330661 10.1109/ACCESS.2023.3347041 10.1109/ACCESS.2018.2827022 10.1109/JSAC.2016.2549418 10.1109/TCOMM.2024.3511704 10.1109/MWC.2015.7306370 10.1109/LCOMM.2018.2803805 10.1109/ACCESS.2021.3071992 10.1109/TWC.2013.031813.120224 10.1109/TSP.2014.2370947 10.1109/LWC.2022.3150217 10.1109/TCOMM.2018.2883079 10.1109/OJCOMS.2020.3010270 10.1109/TCOMM.2019.2906589 10.1109/JSEN.2019.2914796 10.1109/ACCESS.2017.2673248 10.1109/ACCESS.2020.2984204 10.1109/ACCESS.2018.2850363 10.1109/TWC.2019.2932070 10.1109/TVT.2024.3483952 10.1109/TVT.2017.2674976 10.1109/JSTSP.2021.3089026 10.1109/LWC.2016.2521638 10.1109/JSAC.2017.2725878 10.1109/49.995521 10.1109/LCOMM.2016.2532334 10.1109/JSTSP.2016.2523924 10.1109/TWC.2015.2474857 10.1109/LWC.2024.3400974 10.1016/j.phycom.2021.101324 10.1109/TWC.2015.2455980 10.1109/TIT.2010.2090255 10.1109/TSP.2017.2725223 10.1109/MCOM.2015.7263349 10.1109/TWC.2018.2874646 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-025-05542-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_025_05542_3 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29B 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAIAL AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFFHD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- N2Q O9- OVD PHGZM PHGZT PQGLB RNI RZC RZE RZK TEORI JQ2 |
| ID | FETCH-LOGICAL-c272t-b09d15ab8064e41d7a3c0d73b6ae29e66e3f55e515ff05b386f66a4733bf9c473 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001553568100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Wed Nov 26 14:51:35 EST 2025 Sat Nov 29 07:30:35 EST 2025 Tue Sep 16 01:11:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Massive MIMO-NOMA Hybrid precoding Power splitting SWIPT Power allocation MmWave |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-b09d15ab8064e41d7a3c0d73b6ae29e66e3f55e515ff05b386f66a4733bf9c473 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3241052114 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3241052114 crossref_primary_10_1007_s10586_025_05542_3 springer_journals_10_1007_s10586_025_05542_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | RW Heath (5542_CR9) 2016; 10 X Zhu (5542_CR60) 2016; 20 X Gao (5542_CR12) 2016; 34 WM Audu (5542_CR38) 2023; 11 S Sumathi (5542_CR19) 2023 J Tang (5542_CR61) 2022; 9 H Xu (5542_CR43) 2002; 20 R Zhang (5542_CR21) 2023; 72 S Li (5542_CR52) 2021; 46 H Al-Obiedollah (5542_CR31) 2021; 9 AN Uwaechia (5542_CR41) 2020; 8 C Li (5542_CR37) 2023; 158 SN Sur (5542_CR42) 2024; 5 S Boyd (5542_CR62) 2004 L Zhu (5542_CR6) 2019; 67 N Zhao (5542_CR8) 2019; 67 R Pal (5542_CR59) 2018; 22 N Ye (5542_CR3) 2021; 70 R Zhang (5542_CR25) 2013; 12 J Singh (5542_CR58) 2024 A Alkhateeb (5542_CR14) 2015; 14 MRG Aghdam (5542_CR5) 2022; 11 V Khodamoradi (5542_CR29) 2022; 71 Y Liu (5542_CR46) 2023; 23 G Dong (5542_CR28) 2018; 6 Y-Y Lee (5542_CR45) 2015; 63 B Wang (5542_CR16) 2017; 35 Y Kong (5542_CR35) 2024; 13 Z Yinhao (5542_CR18) 2022; 17 S Solaiman (5542_CR2) 2021; 9 5542_CR23 W Lu (5542_CR48) 2017; 5 B Shi (5542_CR22) 2024; 23 E Bjornson (5542_CR56) 2014; 31 J Singh (5542_CR57) 2025 S Zargari (5542_CR27) 2021; 10 Z Xiang (5542_CR50) 2018; 67 V Raghavan (5542_CR44) 2011; 57 W Lu (5542_CR51) 2018; 6 YN Samir (5542_CR20) 2023; 133 I Krikidis (5542_CR24) 2014; 52 L Zhu (5542_CR17) 2019; 18 OE Ayach (5542_CR11) 2014; 13 G Kwon (5542_CR36) 2021; 15 MZ Chowdhury (5542_CR1) 2020; 1 S Park (5542_CR15) 2017; 16 L Dai (5542_CR55) 2015; 53 B Xu (5542_CR30) 2016; 5 S Wang (5542_CR4) 2021; 49 5542_CR13 L Chen (5542_CR47) 2021; 21 Z Zong (5542_CR32) 2016; 15 A Rauniyar (5542_CR26) 2019; 19 S Li (5542_CR10) 2020; 9 AN Uwaechia (5542_CR7) 2020; 8 H Zhang (5542_CR33) 2017; 66 Y Li (5542_CR34) 2025; 74 SH Kim (5542_CR39) 2024; 12 SKTOS Jang (5542_CR49) 2018; 17 Z Chen (5542_CR63) 2017; 65 Z Ding (5542_CR53) 2017; 5 A Jawarneh (5542_CR40) 2022; 10 S Misra (5542_CR54) 2015; 22 |
| References_xml | – volume: 9 start-page: 32 year: 2020 ident: 5542_CR10 publication-title: Electronics doi: 10.3390/electronics9010032 – volume: 8 start-page: 139994 year: 2020 ident: 5542_CR41 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013305 – volume: 52 start-page: 104 issue: 11 year: 2014 ident: 5542_CR24 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2014.6957150 – volume: 5 start-page: 2763 year: 2017 ident: 5542_CR48 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2671903 – volume: 5 start-page: 823 issue: 3 year: 2024 ident: 5542_CR42 publication-title: Telecom doi: 10.3390/telecom5030042 – volume: 17 start-page: 6466 year: 2022 ident: 5542_CR18 publication-title: No. – volume: 10 start-page: 28868 year: 2022 ident: 5542_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3155485 – volume: 23 start-page: 5516 issue: 12 year: 2023 ident: 5542_CR46 publication-title: Sensors doi: 10.3390/s23125516 – volume: 21 start-page: 16381 issue: 14 year: 2021 ident: 5542_CR47 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3076517 – volume: 23 start-page: 5488 issue: 6 year: 2024 ident: 5542_CR22 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2023.3326518 – volume: 9 start-page: 33018 year: 2021 ident: 5542_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3060836 – volume: 13 start-page: 1499 issue: 3 year: 2014 ident: 5542_CR11 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2014.011714.130846 – volume: 71 start-page: 5111 issue: 5 year: 2022 ident: 5542_CR29 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3153323 – volume-title: Convex Optimization year: 2004 ident: 5542_CR62 doi: 10.1017/CBO9780511804441 – volume: 70 start-page: 2337 year: 2021 ident: 5542_CR3 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3057648 – volume: 10 start-page: 557 issue: 3 year: 2021 ident: 5542_CR27 publication-title: IEEE Wireless Commun. Lett. doi: 10.1109/LWC.2020.3037750 – year: 2023 ident: 5542_CR19 publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.4740 – volume: 67 start-page: 4910 issue: 6 year: 2018 ident: 5542_CR50 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2819682 – ident: 5542_CR23 doi: 10.1109/ISIT.2008.4595260 – year: 2025 ident: 5542_CR57 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2025.3534021 – ident: 5542_CR13 doi: 10.1109/ICC.2017.7997065 – volume: 133 start-page: 1769 issue: 3 year: 2023 ident: 5542_CR20 publication-title: Wireless Pers. Commun. doi: 10.1007/s11277-023-10845-y – volume: 11 start-page: 33741 year: 2023 ident: 5542_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3263548 – volume: 49 start-page: 101469 year: 2021 ident: 5542_CR4 publication-title: Phys. Commun. doi: 10.1016/j.phycom.2021.101469 – volume: 16 start-page: 2907 year: 2017 ident: 5542_CR15 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2017.2671869 – volume: 72 start-page: 15967 issue: 12 year: 2023 ident: 5542_CR21 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2023.3293988 – volume: 31 start-page: 14 issue: 6 year: 2014 ident: 5542_CR56 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2330661 – volume: 12 start-page: 5617 year: 2024 ident: 5542_CR39 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3347041 – volume: 6 start-page: 22480 year: 2018 ident: 5542_CR51 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2827022 – volume: 34 start-page: 998 issue: 4 year: 2016 ident: 5542_CR12 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2016.2549418 – year: 2024 ident: 5542_CR58 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2024.3511704 – volume: 22 start-page: 6 issue: 5 year: 2015 ident: 5542_CR54 publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2015.7306370 – volume: 22 start-page: 852 issue: 4 year: 2018 ident: 5542_CR59 publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2018.2803805 – volume: 9 start-page: 57726 year: 2021 ident: 5542_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071992 – volume: 12 start-page: 1989 issue: 5 year: 2013 ident: 5542_CR25 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2013.031813.120224 – volume: 63 start-page: 305 issue: 2 year: 2015 ident: 5542_CR45 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2370947 – volume: 11 start-page: 938 year: 2022 ident: 5542_CR5 publication-title: IEEE Commun. Lett. doi: 10.1109/LWC.2022.3150217 – volume: 67 start-page: 2294 year: 2019 ident: 5542_CR8 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2018.2883079 – volume: 1 start-page: 957 year: 2020 ident: 5542_CR1 publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2020.3010270 – volume: 67 start-page: 5114 issue: 7 year: 2019 ident: 5542_CR6 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2019.2906589 – volume: 19 start-page: 7668 issue: 17 year: 2019 ident: 5542_CR26 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2914796 – volume: 5 start-page: 7667 year: 2017 ident: 5542_CR53 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2673248 – volume: 8 start-page: 62367 year: 2020 ident: 5542_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984204 – volume: 6 start-page: 36810 year: 2018 ident: 5542_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2850363 – volume: 18 start-page: 5065 issue: 11 year: 2019 ident: 5542_CR17 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2019.2932070 – volume: 74 start-page: 4669 issue: 3 year: 2025 ident: 5542_CR34 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2024.3483952 – volume: 66 start-page: 7123 issue: 8 year: 2017 ident: 5542_CR33 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2674976 – volume: 15 start-page: 1211 issue: 5 year: 2021 ident: 5542_CR36 publication-title: IEEE J. Sel. Topics Signal Process. doi: 10.1109/JSTSP.2021.3089026 – volume: 5 start-page: 220 issue: 2 year: 2016 ident: 5542_CR30 publication-title: IEEE Wireless Commun. Lett. doi: 10.1109/LWC.2016.2521638 – volume: 158 start-page: 154449 year: 2023 ident: 5542_CR37 publication-title: AEU-Int. J. Electron. C. – volume: 35 start-page: 2370 issue: 10 year: 2017 ident: 5542_CR16 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2017.2725878 – volume: 20 start-page: 620 issue: 3 year: 2002 ident: 5542_CR43 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/49.995521 – volume: 20 start-page: 776 issue: 4 year: 2016 ident: 5542_CR60 publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2016.2532334 – volume: 10 start-page: 436 issue: 3 year: 2016 ident: 5542_CR9 publication-title: IEEE J. Sel. Topics Signal Process. doi: 10.1109/JSTSP.2016.2523924 – volume: 15 start-page: 430 issue: 1 year: 2016 ident: 5542_CR32 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2015.2474857 – volume: 13 start-page: 2075 issue: 8 year: 2024 ident: 5542_CR35 publication-title: IEEE Wireless Commun. Lett. doi: 10.1109/LWC.2024.3400974 – volume: 46 start-page: 101324 year: 2021 ident: 5542_CR52 publication-title: Physical Commun doi: 10.1016/j.phycom.2021.101324 – volume: 14 start-page: 6481 issue: 11 year: 2015 ident: 5542_CR14 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2015.2455980 – volume: 57 start-page: 345 issue: 1 year: 2011 ident: 5542_CR44 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2010.2090255 – volume: 65 start-page: 5191 issue: 19 year: 2017 ident: 5542_CR63 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2725223 – volume: 53 start-page: 74 issue: 9 year: 2015 ident: 5542_CR55 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2015.7263349 – volume: 9 start-page: 16962 issue: 18 year: 2022 ident: 5542_CR61 publication-title: IEEE Int. Things J. – volume: 17 start-page: 8180 issue: 12 year: 2018 ident: 5542_CR49 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2018.2874646 |
| SSID | ssj0009729 |
| Score | 2.3602498 |
| Snippet | The integration of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with non-orthogonal multiple access (NOMA) significantly... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 532 |
| SubjectTerms | Algorithms Antennas Clusters Communication Computer Communication Networks Computer Science Data transmission Decoding Energy consumption Energy efficiency Energy harvesting Millimeter waves MIMO communication Multiple objective analysis Nonorthogonal multiple access Operating Systems Optimization Power management Power transfer Processor Architectures Tradeoffs Transmission rate (communications) User groups |
| Title | Joint optimization of energy harvesting and data transmission in SWIPT-enabled hybrid precoding mmWave massive MIMO-NOMA systems |
| URI | https://link.springer.com/article/10.1007/s10586-025-05542-3 https://www.proquest.com/docview/3241052114 |
| Volume | 28 |
| WOSCitedRecordID | wos001553568100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DSyUp3jrBjawlMSxnYwVAgFSC-K9RX7SDk1RG5DY-OnYbqICggGmDLlY0d35vkt83x1CB1Kl1rIox0rGCU5FLHGWWIkjqXUeUesgPw3DJni3mz0-5lc1KWzcVLs3R5IhUn8iu9HMF8xSHDkMTDCZRfMO7jI_sOH65n7aapeH2WQxcdI8o7ymyvy8xlc4muaY345FA9qctv73nstoqc4uoT1xhxU0Y8pV1GomN0C9kdfQ-8WwX1YwdPFiUBMxYWjBBCIg9MQoNN8on0CUGnwRKVQe05xP-J9r0C_h5uH86habwLzS0HvzxC949p_XHgxhMHgQrwYGLjV34RQ6551L3L3stGHSOXq8ju5OT26Pz3A9iwGrhCcVllGuYypk5lIYk8aaC6IizYlkwiS5YcwQS6lx2ZG1EZVO95YxkXJCpM2Vu26guXJYmk0ERgvtnqBc-arGlAgiNWNKMC6oVinZQoeNSYrnScuNYtpc2Su3cMotgnILJ73bWK2ot9-4cFli7FnJcbqFjhorTW__vtr238R30GISDO1rznbRXDV6MXtoQb1W_fFoP7jlBzQ63hE |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5RqNReeBQQb-bQW7uS7X3ZR1SBCJCAIC3crH2SHOKgxEXixk_v7sZWKIJDe_LB45U1Mzvf2DvfDEJflabO8aTAWqUZpjJVOM-cwokypkiY85BP47AJ0evld3fFVUMKm7bV7u2RZIzUL8huLA8FswwnHgMzTD6gJeoRK3TMv775NW-1K-JsspR4aZEz0VBl3l7jbzia55ivjkUj2pys_N97rqLlJruEo5k7rKEFW31BK-3kBmg28jp6PhsPqxrGPl6MGiImjB3YSASEgZzE5hvVPcjKQCgihTpgmveJ8HMNhhXc3Hau-thG5pWBwVMgfsFD-LwOYAij0a18tDDyqbkPp9DtdC9x77J7BLPO0dMN9PPkuP_jFDezGLDORFZjlRQmZVLlPoWxNDVCEp0YQRSXNiss55Y4xqzPjpxLmPK6d5xLKghRrtD-uokWq3FltxBYI41_ggkdqhopkUQZzrXkQjKjKdlG31qTlA-zlhvlvLlyUG7plVtG5ZZeeq-1Wtlsv2nps8Q0sJJTuo2-t1aa335_tZ1_Ez9En0773YvyotM730Wfs2j0UH-2hxbryW-7jz7qx3o4nRxEF_0DpaPg9Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF61KUJcSqFUQGmZAzdYYXtf9hEVoqYlIRJQuFn7LDnEiRITqbf-9O5ubIWi9lD15INnV9bM7M633vlmEDpSmjrHkwJrlWaYylThPHMKJ8qYImHOh3wam02IwSC_vy-GT1j8Mdu9vZJcchpClaaqPp0ad_qE-MbykDzLcOLjYYbJS_SKhkT6cF6__rYquytin7KUeGmRM9HQZv48x--haYU3n12RxsjT3fz_b36DXjeoE86WbrKFXthqG222HR2gWeBv0c8vk1FVw8TvI-OGoAkTBzYSBOFBzmJRjuo7yMpASC6FOsQ67yvhpxuMKri-6w1vsI2MLAMPPwIhDKbh2B2CJIzHd3JhYewhu99mod_rX-HBVf8MlhWl5zvotntx8-kzbno0YJ2JrMYqKUzKpMo9tLE0NUISnRhBFJc2KyznljjGrEdNziVMeTs4ziUVhChXaP98hzrVpLK7CKyRxo9gQodsR0okUYZzLbmQzGhK9tBxa55yuizFUa6KLgflll65ZVRu6aUPWguWzbKclx49poGtnNI9dNJabPX677Pt_5v4IVofnnfLy97g63u0kUWbh7S0A9SpZ4_2A1rTi3o0n32M3voL8ozp2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+optimization+of+energy+harvesting+and+data+transmission+in+SWIPT-enabled+hybrid+precoding+mmWave+massive+MIMO-NOMA+systems&rft.jtitle=Cluster+computing&rft.au=Ghamry%2C+Walid+K.&rft.au=Shukry%2C+Suzan&rft.date=2025-09-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=8&rft_id=info:doi/10.1007%2Fs10586-025-05542-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_025_05542_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |