A Non Linear Optimal Control Problem Related to a Road De-icing Device: Analysis and Numerical Experiments
In order to design a road de-icing device by heating, we consider in a two dimensional setting the optimal control of an advection–diffusion equation with a nonlinear boundary condition of the Stefan-Boltzmann type. The problem models the heating of a road during a winter period to keep positive its...
Uložené v:
| Vydané v: | Applied mathematics & optimization Ročník 91; číslo 3; s. 63 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.06.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0095-4616, 1432-0606 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In order to design a road de-icing device by heating, we consider in a two dimensional setting the optimal control of an advection–diffusion equation with a nonlinear boundary condition of the Stefan-Boltzmann type. The problem models the heating of a road during a winter period to keep positive its surface temperature above a given threshold. The heating device is performed through the circulation of a coolant in a porous layer of the road. We prove the well-posedeness of the nonlinear optimal control problem, subject to unilateral constraints on the control and the state, set up a gradient based algorithm then discuss some numerical results associated with real data obtained from experimental measurements. The study, initially developed in a one dimensional simpler setting in [
1
], aims to quantify the minimal energy to be provided to keep the road surface without frost or snow. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0095-4616 1432-0606 |
| DOI: | 10.1007/s00245-025-10261-7 |