Linearization and Lemma of Newton for operator functions
We study the action of the nonlinear mapping G [ z ] between real or complex Banach spaces in the vicinity of a given curve with respect to possible linearization, emerging patterns of level sets, as well as existing solutions of $$G[z]=0$$ G [ z ] = 0 . The results represent local generalizations o...
Saved in:
| Published in: | Advances in operator theory Vol. 10; no. 4; p. 85 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
Springer Nature B.V
01.10.2025
|
| Subjects: | |
| ISSN: | 2662-2009, 2538-225X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We study the action of the nonlinear mapping G [ z ] between real or complex Banach spaces in the vicinity of a given curve with respect to possible linearization, emerging patterns of level sets, as well as existing solutions of $$G[z]=0$$ G [ z ] = 0 . The results represent local generalizations of the standard implicit or inverse function theorem and of Newton’s Lemma, considering the order of approximation needed to obtain solutions of $$G[z]=0$$ G [ z ] = 0 . The main technical tool is given by Jordan chains with increasing rank, used to obtain an Ansatz, appropriate for transformation of the nonlinear system to its linear part. The family of linear mappings is restricted to the case of an isolated singularity. Geometrically, the Jordan chains define a generalized cone around the given curve, composed of approximate solutions of order 2 k with k denoting the maximal rank of Jordan chains needed to ensure k -surjectivity of the linear family. Along these lines, the zero set of G [ z ] in the cone is calculated immediately, agreeing up to the order of $$k-1$$ k - 1 with the given approximation. Hence, the results may also be interpreted as a version of Tougeron’s implicit function theorem in Banach spaces, essentially restricted to the arc case of a single variable. Finally, by considering a left shift of the Jordan chains, the Ansatz can be modified in a systematic way to obtain a sequence of refined versions of linearization theorems and Newton Lemmas in Banach spaces. |
|---|---|
| AbstractList | We study the action of the nonlinear mapping G[z] between real or complex Banach spaces in the vicinity of a given curve with respect to possible linearization, emerging patterns of level sets, as well as existing solutions of G[z]=0. The results represent local generalizations of the standard implicit or inverse function theorem and of Newton’s Lemma, considering the order of approximation needed to obtain solutions of G[z]=0. The main technical tool is given by Jordan chains with increasing rank, used to obtain an Ansatz, appropriate for transformation of the nonlinear system to its linear part. The family of linear mappings is restricted to the case of an isolated singularity. Geometrically, the Jordan chains define a generalized cone around the given curve, composed of approximate solutions of order 2k with k denoting the maximal rank of Jordan chains needed to ensure k-surjectivity of the linear family. Along these lines, the zero set of G[z] in the cone is calculated immediately, agreeing up to the order of k-1 with the given approximation. Hence, the results may also be interpreted as a version of Tougeron’s implicit function theorem in Banach spaces, essentially restricted to the arc case of a single variable. Finally, by considering a left shift of the Jordan chains, the Ansatz can be modified in a systematic way to obtain a sequence of refined versions of linearization theorems and Newton Lemmas in Banach spaces. We study the action of the nonlinear mapping G [ z ] between real or complex Banach spaces in the vicinity of a given curve with respect to possible linearization, emerging patterns of level sets, as well as existing solutions of $$G[z]=0$$ G [ z ] = 0 . The results represent local generalizations of the standard implicit or inverse function theorem and of Newton’s Lemma, considering the order of approximation needed to obtain solutions of $$G[z]=0$$ G [ z ] = 0 . The main technical tool is given by Jordan chains with increasing rank, used to obtain an Ansatz, appropriate for transformation of the nonlinear system to its linear part. The family of linear mappings is restricted to the case of an isolated singularity. Geometrically, the Jordan chains define a generalized cone around the given curve, composed of approximate solutions of order 2 k with k denoting the maximal rank of Jordan chains needed to ensure k -surjectivity of the linear family. Along these lines, the zero set of G [ z ] in the cone is calculated immediately, agreeing up to the order of $$k-1$$ k - 1 with the given approximation. Hence, the results may also be interpreted as a version of Tougeron’s implicit function theorem in Banach spaces, essentially restricted to the arc case of a single variable. Finally, by considering a left shift of the Jordan chains, the Ansatz can be modified in a systematic way to obtain a sequence of refined versions of linearization theorems and Newton Lemmas in Banach spaces. |
| ArticleNumber | 85 |
| Author | Stiefenhofer, Matthias |
| Author_xml | – sequence: 1 givenname: Matthias orcidid: 0009-0001-4041-8351 surname: Stiefenhofer fullname: Stiefenhofer, Matthias |
| BookMark | eNotkE1LxDAURYOM4DjOH3BVcB19eUnadCmDX1B0o-AuvLYJdHCSMWkR_fV2HFfv8jjcC-ecLUIMjrFLAdcCoLrJSoIsOaDmAKpCbk7YErU0HFG_L-ZclsgRoD5j65y3AIAg6xJhyUwzBEdp-KFxiKGg0BeN2-2oiL54dl_j_PMxFXHvEo1z8FPoDmS-YKeePrJb_98Ve7u_e9088ubl4Wlz2_AOKxw5tTXJngy2XvTUGkOqJETftoKqXtVV31Wu1051NQjSWredqUqnySitSJBcsatj7z7Fz8nl0W7jlMI8aSVqbaRAWc8UHqkuxZyT83afhh2lbyvAHiTZoyQ7S7J_kqyRvx-MW6s |
| Cites_doi | 10.1016/1385-7258(74)90039-0 10.1016/0022-0396(88)90136-2 10.1201/9781420035506 10.1090/S0002-9939-97-04112-9 10.5427/jsing.2018.17g 10.1007/978-3-0346-0126-9 10.1007/978-1-4612-5154-5 10.1090/bull/1579 10.1353/ajm.0.0134 10.1016/j.indag.2012.05.001 10.1007/BF02684802 10.1007/s00020-004-1311-y 10.1016/j.laa.2025.07.013 10.1016/j.jalgebra.2009.07.038 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s43036-025-00472-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2538-225X |
| ExternalDocumentID | 10_1007_s43036_025_00472_8 |
| GroupedDBID | 0R~ 406 8UJ AACDK AAHNG AAJBT AAOJF AASML AATNV AAUYE AAYXX ABAKF ABBRH ABDBE ABECU ABFSG ABJNI ABMQK ABRTQ ABTEG ABTKH ABTMW ACAOD ACDTI ACHSB ACOKC ACPIV ACSTC ACZOJ ADKNI ADYFF AEFQL AEMSY AEZWR AFBBN AFDZB AFFHD AFHIU AFKRA AFOHR AFQWF AGMZJ AGQEE AHPBZ AHWEU AIGIU AILAN AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA AZQEC BENPR BGNMA CCPQU CITATION DPUIP DWQXO EBLON EBS EJD FIGPU FNLPD FRP GNUQQ GUQSH HCIFZ IKXTQ IWAJR JZLTJ KOV LLZTM M2O M2P M4Y NPVJJ NQJWS NU0 PHGZM PHGZT PT4 PUASD RBF RBV ROL RPE RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AESKC |
| ID | FETCH-LOGICAL-c272t-ab9a3da82bf1dab88a46a22fbb1a7d497dc7ed5e4c901a555bc876e5a8454a1a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001562569500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2662-2009 |
| IngestDate | Sun Nov 02 05:49:47 EST 2025 Sat Nov 29 07:02:15 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-ab9a3da82bf1dab88a46a22fbb1a7d497dc7ed5e4c901a555bc876e5a8454a1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-4041-8351 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s43036-025-00472-8.pdf |
| PQID | 3255831239 |
| PQPubID | 7433678 |
| ParticipantIDs | proquest_journals_3255831239 crossref_primary_10_1007_s43036_025_00472_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Advances in operator theory |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | 472_CR13 472_CR14 472_CR15 472_CR16 472_CR17 W Kaballo (472_CR10) 2012; 23 H Hauser (472_CR9) 2017; 54 RF Coleman (472_CR4) 2009; 322 J Esquinas (472_CR5) 1988; 75 J López-Gómez (472_CR12) 2001 B Fisher (472_CR6) 1997; 125 472_CR7 H Bart (472_CR2) 1974; 77 472_CR1 M Stiefenhofer (472_CR18) 2025; 725 MJ Greenberg (472_CR8) 1966; 31 472_CR3 472_CR11 |
| References_xml | – volume: 77 start-page: 217 issue: 3 year: 1974 ident: 472_CR2 publication-title: Indag. Math. doi: 10.1016/1385-7258(74)90039-0 – ident: 472_CR16 – ident: 472_CR11 – ident: 472_CR17 – volume: 75 start-page: 206 year: 1988 ident: 472_CR5 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(88)90136-2 – ident: 472_CR15 – volume-title: Spectral Theory and Nonlinear Functional Analysis, Research Notes in Mathematics year: 2001 ident: 472_CR12 doi: 10.1201/9781420035506 – volume: 125 start-page: 3185 issue: 11 year: 1997 ident: 472_CR6 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-97-04112-9 – ident: 472_CR14 doi: 10.5427/jsing.2018.17g – ident: 472_CR7 doi: 10.1007/978-3-0346-0126-9 – ident: 472_CR1 doi: 10.1007/978-1-4612-5154-5 – volume: 54 start-page: 595 year: 2017 ident: 472_CR9 publication-title: Bull. Am. Math. Soc. doi: 10.1090/bull/1579 – ident: 472_CR3 doi: 10.1353/ajm.0.0134 – volume: 23 start-page: 970 year: 2012 ident: 472_CR10 publication-title: Indag. Math. doi: 10.1016/j.indag.2012.05.001 – volume: 31 start-page: 59 year: 1966 ident: 472_CR8 publication-title: Publ. Math. Inst. Hautes Études Sci. doi: 10.1007/BF02684802 – ident: 472_CR13 doi: 10.1007/s00020-004-1311-y – volume: 725 start-page: 319 year: 2025 ident: 472_CR18 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2025.07.013 – volume: 322 start-page: 3427 year: 2009 ident: 472_CR4 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2009.07.038 |
| SSID | ssj0002039620 |
| Score | 2.3047187 |
| Snippet | We study the action of the nonlinear mapping G [ z ] between real or complex Banach spaces in the vicinity of a given curve with respect to possible... We study the action of the nonlinear mapping G[z] between real or complex Banach spaces in the vicinity of a given curve with respect to possible... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 85 |
| SubjectTerms | Approximation Linear equations |
| Title | Linearization and Lemma of Newton for operator functions |
| URI | https://www.proquest.com/docview/3255831239 |
| Volume | 10 |
| WOSCitedRecordID | wos001562569500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Online Journals customDbUrl: eissn: 2538-225X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002039620 issn: 2662-2009 databaseCode: RSV dateStart: 20200201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1VFQMMfCMKBXlgg4jGsWNnRIiKoVRIfKhbdI4diaFp1RR-P2cnrVQJhm6ZHOvd-d6d7XcGuBkoLk2R0ErjfusG0UQoi5S-hBMFIqUMQSg8UuOxnkyy1w7c_XuCf18LH2Uj_-xqaG0YeWVvnDZirbfP9YYKHyRZGtowEudwb_2sFcn8PcomEW3G4UAuw4PtpnUI-20SyR4aqx9Bx1XHsPey7sBan4CmIpOcuFVZMqwsG7npFNmsZBTYKONjlK6y2dyFc3bm-S244Cl8DJ_eH5-j9pWEqOCKLyM0GSYWNTdlbNFojSJFzktjYlRWZMoWyllJyBP1o5RkGoqATqIWUmCMyRl0q1nlzoFlhUU54EgloucpgaWlhErGZUm_Uob34HYFWT5vmmHk67bHAY-c8MgDHrnuQX-Fat4ujDpPqITRCdFldrHVYJewyz3W4RpdH7rLxbe7gp3iZ_lVL66DJ_wCIxepiQ |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linearization+and+Lemma+of+Newton+for+operator+functions&rft.jtitle=Advances+in+operator+theory&rft.au=Stiefenhofer%2C+Matthias&rft.date=2025-10-01&rft.issn=2662-2009&rft.eissn=2538-225X&rft.volume=10&rft.issue=4&rft_id=info:doi/10.1007%2Fs43036-025-00472-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43036_025_00472_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-2009&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-2009&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-2009&client=summon |