An improved high-dimensional Bayesian optimization algorithm

The Bayesian Optimization Algorithm, as an effective approach to addressing non-linear global optimization problems, is widely embraced in a myriad of machine learning application domains. With the development of big data, the presence of computational and statistical challenges in high-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Jg. 55; H. 13; S. 915
Hauptverfasser: Guan, Juan, Wang, Yanhua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2025
Springer Nature B.V
Schlagworte:
ISSN:0924-669X, 1573-7497
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Bayesian Optimization Algorithm, as an effective approach to addressing non-linear global optimization problems, is widely embraced in a myriad of machine learning application domains. With the development of big data, the presence of computational and statistical challenges in high-dimensional settings means that, despite the proposed improvements and enhancements, the applicability of the Bayesian Optimization Algorithm is still restricted to low-dimensional problems. Our algorithm (1) extracts an interesting nonlinear latent structure in the function by Kernal Principal Component Analysis(KPCA) to reduce the computational complexity, and (2) uses an improved Mutual-Information-Maximizing Input Clustering (MIMIC) algorithm to optimize only a low-dimensional subspace each iteration for more efficient and effective BO. The experiments demonstrate that the proposed algorithm can achieve a clear improvement in optimization accuracy and speed in high-dimensional space and can efficiently solve high-dimensional problems for Bayesian optimization algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-025-06750-5