An improved high-dimensional Bayesian optimization algorithm
The Bayesian Optimization Algorithm, as an effective approach to addressing non-linear global optimization problems, is widely embraced in a myriad of machine learning application domains. With the development of big data, the presence of computational and statistical challenges in high-dimensional...
Uložené v:
| Vydané v: | Applied intelligence (Dordrecht, Netherlands) Ročník 55; číslo 13; s. 915 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.08.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0924-669X, 1573-7497 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Bayesian Optimization Algorithm, as an effective approach to addressing non-linear global optimization problems, is widely embraced in a myriad of machine learning application domains. With the development of big data, the presence of computational and statistical challenges in high-dimensional settings means that, despite the proposed improvements and enhancements, the applicability of the Bayesian Optimization Algorithm is still restricted to low-dimensional problems. Our algorithm (1) extracts an interesting nonlinear latent structure in the function by Kernal Principal Component Analysis(KPCA) to reduce the computational complexity, and (2) uses an improved Mutual-Information-Maximizing Input Clustering (MIMIC) algorithm to optimize only a low-dimensional subspace each iteration for more efficient and effective BO. The experiments demonstrate that the proposed algorithm can achieve a clear improvement in optimization accuracy and speed in high-dimensional space and can efficiently solve high-dimensional problems for Bayesian optimization algorithm. |
|---|---|
| AbstractList | The Bayesian Optimization Algorithm, as an effective approach to addressing non-linear global optimization problems, is widely embraced in a myriad of machine learning application domains. With the development of big data, the presence of computational and statistical challenges in high-dimensional settings means that, despite the proposed improvements and enhancements, the applicability of the Bayesian Optimization Algorithm is still restricted to low-dimensional problems. Our algorithm (1) extracts an interesting nonlinear latent structure in the function by Kernal Principal Component Analysis(KPCA) to reduce the computational complexity, and (2) uses an improved Mutual-Information-Maximizing Input Clustering (MIMIC) algorithm to optimize only a low-dimensional subspace each iteration for more efficient and effective BO. The experiments demonstrate that the proposed algorithm can achieve a clear improvement in optimization accuracy and speed in high-dimensional space and can efficiently solve high-dimensional problems for Bayesian optimization algorithm. |
| ArticleNumber | 915 |
| Author | Wang, Yanhua Guan, Juan |
| Author_xml | – sequence: 1 givenname: Juan surname: Guan fullname: Guan, Juan email: guanjuan@163.sufe.edu.cn organization: School of Mathematics, Shanghai University of Finance and Economics – sequence: 2 givenname: Yanhua surname: Wang fullname: Wang, Yanhua organization: School of Mathematics, Shanghai University of Finance and Economics, Shanghai Key Laboratory of Financial Information Technology, Shanghai University of Finance and Economics |
| BookMark | eNp9kMFKAzEURYNUsK3-gKsB19GXySSZATe1WBUKbhTchUzz0qZ0JjWZCvXrHR3BnasHj3sulzMhoza0SMglg2sGoG4Sg6KsKOSCglQCqDghYyYUp6qo1IiMocoLKmX1dkYmKW0BgHNgY3I7azPf7GP4QJtt_HpDrW-wTT60ZpfdmSMmb9os7Dvf-E_T9f_M7NYh-m7TnJNTZ3YJL37vlLwu7l_mj3T5_PA0ny3pKld5R41BaxQKZFLUjCt0yCpec16XilUgsUaLonSmdMxWljsFvCxkaa1xhXWOT8nV0NvvfD9g6vQ2HGI_MGmecyUkAFN9Kh9SqxhSiuj0PvrGxKNmoL8t6cGS7i3pH0ta9BAfoNSH2zXGv-p_qC8pg21k |
| Cites_doi | 10.1016/j.tust.2020.103493 10.1214/aoms/1177704248 10.1007/978-3-642-15871-1_31 10.1016/B978-0-444-63428-3.50180-6 10.1007/BF00941892 10.1145/2939672.2945367 10.1007/978-3-319-23871-5_3 10.1021/acs.jcim.1c00637 10.1080/01621459.1937.10503522 10.1142/S0129065704001899 10.1145/3582078 10.1145/2858036.2858253 10.24963/ijcai.2019/596 10.1016/j.swevo.2021.100888 10.1007/s10287-020-00376-3 10.1038/s43586-022-00184-w 10.1007/s10994-021-06019-1 10.1007/BFb0020217 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10489-025-06750-5 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| ExternalDocumentID | 10_1007_s10489_025_06750_5 |
| GroupedDBID | -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 203 23M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 77I 77K 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 8FE 8FG AAAVM AAOBN AARHV AAYTO AAYXX ABJCF ABQSL ABULA ABUWG ACBXY ADHKG AEBTG AEFIE AEKMD AFEXP AFFHD AFGCZ AFKRA AGGDS AGQPQ AJBLW AZQEC BBWZM BDATZ BEZIV BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO EJD FINBP FRNLG FSGXE GNUQQ H13 K6V K7- KOW L6V M0C M7S N2Q NDZJH O9- OVD P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PSYQQ PTHSS Q2X R4E RNI RZC RZE RZK S26 S28 SCJ SCLPG T16 TEORI ZY4 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c272t-aaeda7e5e165b137efe193b33b871906ebede58fa8f1d9d3f7038468ddaf4dff3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001546861600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 14:44:29 EST 2025 Sat Nov 29 07:23:50 EST 2025 Sun Sep 28 01:12:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | KPCA High-dimensional Bayesian optimization MIMIC algorithm Variable interaction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-aaeda7e5e165b137efe193b33b871906ebede58fa8f1d9d3f7038468ddaf4dff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3237560017 |
| PQPubID | 326365 |
| ParticipantIDs | proquest_journals_3237560017 crossref_primary_10_1007_s10489_025_06750_5 springer_journals_10_1007_s10489_025_06750_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 6750_CR29 6750_CR28 6750_CR1 6750_CR25 6750_CR24 6750_CR27 6750_CR26 6750_CR21 6750_CR20 6750_CR23 6750_CR22 6750_CR18 6750_CR17 6750_CR19 6750_CR14 6750_CR13 6750_CR35 6750_CR16 6750_CR15 6750_CR10 6750_CR32 6750_CR31 6750_CR12 6750_CR34 6750_CR11 6750_CR33 6750_CR9 6750_CR8 6750_CR7 6750_CR30 6750_CR6 6750_CR5 6750_CR4 6750_CR3 6750_CR2 |
| References_xml | – ident: 6750_CR12 doi: 10.1016/j.tust.2020.103493 – ident: 6750_CR24 doi: 10.1214/aoms/1177704248 – ident: 6750_CR30 doi: 10.1007/978-3-642-15871-1_31 – ident: 6750_CR32 – ident: 6750_CR18 doi: 10.1016/B978-0-444-63428-3.50180-6 – ident: 6750_CR34 – ident: 6750_CR16 – ident: 6750_CR33 doi: 10.1007/BF00941892 – ident: 6750_CR11 doi: 10.1145/2939672.2945367 – ident: 6750_CR9 – ident: 6750_CR13 – ident: 6750_CR7 doi: 10.1007/978-3-319-23871-5_3 – ident: 6750_CR8 doi: 10.1021/acs.jcim.1c00637 – ident: 6750_CR5 – ident: 6750_CR35 doi: 10.1080/01621459.1937.10503522 – ident: 6750_CR21 – ident: 6750_CR27 – ident: 6750_CR3 – ident: 6750_CR29 – ident: 6750_CR22 doi: 10.1142/S0129065704001899 – ident: 6750_CR14 doi: 10.1145/3582078 – ident: 6750_CR6 doi: 10.1145/2858036.2858253 – ident: 6750_CR20 doi: 10.24963/ijcai.2019/596 – ident: 6750_CR31 – ident: 6750_CR17 – ident: 6750_CR15 – ident: 6750_CR1 doi: 10.1016/j.swevo.2021.100888 – ident: 6750_CR19 – ident: 6750_CR4 doi: 10.1007/s10287-020-00376-3 – ident: 6750_CR25 doi: 10.1038/s43586-022-00184-w – ident: 6750_CR10 doi: 10.1007/s10994-021-06019-1 – ident: 6750_CR23 doi: 10.1007/BFb0020217 – ident: 6750_CR26 – ident: 6750_CR2 – ident: 6750_CR28 |
| SSID | ssj0003301 |
| Score | 2.3921416 |
| Snippet | The Bayesian Optimization Algorithm, as an effective approach to addressing non-linear global optimization problems, is widely embraced in a myriad of machine... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 915 |
| SubjectTerms | Algorithms Artificial Intelligence Bayesian analysis Clustering Computer Science Datasets Decomposition Design optimization Global optimization Machine learning Machines Manufacturing Mechanical Engineering Methods Optimization algorithms Principal components analysis Processes |
| Title | An improved high-dimensional Bayesian optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s10489-025-06750-5 https://www.proquest.com/docview/3237560017 |
| Volume | 55 |
| WOSCitedRecordID | wos001546861600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PXhx_sTplBy8aaDtS9oUvExxeJAhqGO3ki4vOnCdbFXwvzfJWqeiBz23PMr3kpfvNe99j5BjkDzUwIEpJTnjYahYiilnwok7yRiA-5Es_euk15ODQXpTNYXN6mr3-krSR-pPzW7clfdEgjmWGzCxTFaEU5txOfpt_yP-2gzdz8mzmQWL43RQtcr8bOPrcbTgmN-uRf1p023-7zs3yHrFLmlnvhw2yRIWW6RZT26g1UbeJmedgo787wTU1CkWM-1U_ucKHfRcvaHrraQTG0_GVaMmVU8Pk-mofBzvkPvu5d3FFavmKLBhlESldQNqlaDAMBZ5CAkatLQtB8httpQGsfWjRiGNkibUqQZjo4ClJVJrZbg2BnZJo5gUuEeoARBBzmVgFPJhHOWIQkMy1DJQQuZJi5zUcGbPc7mMbCGM7IDJLDCZByYTLdKuEc-qrTPLIILE0zBr7LRGePH4d2v7f3v9gKxF3kmumK9NGuX0BQ_J6vC1HM2mR35JvQOhjMWl |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqXnwTQNtk7Qp-DLFMXEOwTn2VtIl0YHrZKuC_71J1joVfdDnlqN8l1y-a-6-AzgmnPqSUIKF4BRT3xc4VjHFzIo78ZAQ6kay9NpRp8P7_fi2aAqbltXu5ZWki9Sfmt2oLe8JGLYs18NsEZaoHbNjc_S73kf8NRm6m5NnMgschnG_aJX52cbX42jOMb9di7rTpln933euw1rBLlFjthw2YEFlm1AtJzegYiNvwVkjQ0P3O0FJZBWLsbQq_zOFDnQu3pTtrURjE09GRaMmEk8P48kwfxxtw33zsnvRwsUcBTwIoiA3blBSRIopP2SpTyKllaFtKSGpyZZiLzR-lIpxLbj2ZSyJNlHA0BIupdBUak12oJKNM7ULSBPCvJRyTwtFB2GQKsUkiQaSe4LxNKrBSQln8jyTy0jmwsgWmMQAkzhgElaDeol4UmydaUICEjkaZoydlgjPH_9ube9vrx_BSqt7007aV53rfVgNnMNsYV8dKvnkRR3A8uA1H04nh255vQPvesiJ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RXxxXnE6NQ--aVjbJG0KvszLUBxjeBl7K2mT6MB1Y6uC_94kbd0UfRCfWw7lnOTkO835vgPAMWbEFZhgxDkjiLguR6EMCaJG3In5GBM7kqXXDjod1u-H3TkWv-12L68kc06DUWlKs8ZYqMYc8Y2YVh-PIoN4HUQXwRLRlYxp6rq7733mYl2t25l5uspAvh_2C9rMzza-Hk0zvPntitSePK3q_795HawVqBM282WyARZkugmq5UQHWGzwLXDWTOHA_maQAholYySM-n-u3AHP-bs0nEs40nlmWBA4IX95Gk0G2fNwGzy2rh4urlExXwElXuBlOjxS8EBS6fo0dnEgldRwLsY41lVU6Pg6vkJSpjhTrggFVjo7aLjChOCKCKXwDqiko1TuAqgwpk5MmKO4JInvxVJSgYNEMIdTFgc1cFK6NhrnMhrRTDDZOCbSjomsYyJaA_XS-1GxpaYR9nBg4Zk2dlp6e_b4d2t7f3v9CKx0L1tR-6Zzuw9WPRsv0-9XB5Vs8ioPwHLylg2mk0O70j4AuWTRbQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+high-dimensional+Bayesian+optimization+algorithm&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Guan%2C+Juan&rft.au=Wang%2C+Yanhua&rft.date=2025-08-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=13&rft_id=info:doi/10.1007%2Fs10489-025-06750-5&rft.externalDocID=10_1007_s10489_025_06750_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |