An improved high-dimensional Bayesian optimization algorithm

The Bayesian Optimization Algorithm, as an effective approach to addressing non-linear global optimization problems, is widely embraced in a myriad of machine learning application domains. With the development of big data, the presence of computational and statistical challenges in high-dimensional...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied intelligence (Dordrecht, Netherlands) Ročník 55; číslo 13; s. 915
Hlavní autori: Guan, Juan, Wang, Yanhua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.08.2025
Springer Nature B.V
Predmet:
ISSN:0924-669X, 1573-7497
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Bayesian Optimization Algorithm, as an effective approach to addressing non-linear global optimization problems, is widely embraced in a myriad of machine learning application domains. With the development of big data, the presence of computational and statistical challenges in high-dimensional settings means that, despite the proposed improvements and enhancements, the applicability of the Bayesian Optimization Algorithm is still restricted to low-dimensional problems. Our algorithm (1) extracts an interesting nonlinear latent structure in the function by Kernal Principal Component Analysis(KPCA) to reduce the computational complexity, and (2) uses an improved Mutual-Information-Maximizing Input Clustering (MIMIC) algorithm to optimize only a low-dimensional subspace each iteration for more efficient and effective BO. The experiments demonstrate that the proposed algorithm can achieve a clear improvement in optimization accuracy and speed in high-dimensional space and can efficiently solve high-dimensional problems for Bayesian optimization algorithm.
AbstractList The Bayesian Optimization Algorithm, as an effective approach to addressing non-linear global optimization problems, is widely embraced in a myriad of machine learning application domains. With the development of big data, the presence of computational and statistical challenges in high-dimensional settings means that, despite the proposed improvements and enhancements, the applicability of the Bayesian Optimization Algorithm is still restricted to low-dimensional problems. Our algorithm (1) extracts an interesting nonlinear latent structure in the function by Kernal Principal Component Analysis(KPCA) to reduce the computational complexity, and (2) uses an improved Mutual-Information-Maximizing Input Clustering (MIMIC) algorithm to optimize only a low-dimensional subspace each iteration for more efficient and effective BO. The experiments demonstrate that the proposed algorithm can achieve a clear improvement in optimization accuracy and speed in high-dimensional space and can efficiently solve high-dimensional problems for Bayesian optimization algorithm.
ArticleNumber 915
Author Wang, Yanhua
Guan, Juan
Author_xml – sequence: 1
  givenname: Juan
  surname: Guan
  fullname: Guan, Juan
  email: guanjuan@163.sufe.edu.cn
  organization: School of Mathematics, Shanghai University of Finance and Economics
– sequence: 2
  givenname: Yanhua
  surname: Wang
  fullname: Wang, Yanhua
  organization: School of Mathematics, Shanghai University of Finance and Economics, Shanghai Key Laboratory of Financial Information Technology, Shanghai University of Finance and Economics
BookMark eNp9kMFKAzEURYNUsK3-gKsB19GXySSZATe1WBUKbhTchUzz0qZ0JjWZCvXrHR3BnasHj3sulzMhoza0SMglg2sGoG4Sg6KsKOSCglQCqDghYyYUp6qo1IiMocoLKmX1dkYmKW0BgHNgY3I7azPf7GP4QJtt_HpDrW-wTT60ZpfdmSMmb9os7Dvf-E_T9f_M7NYh-m7TnJNTZ3YJL37vlLwu7l_mj3T5_PA0ny3pKld5R41BaxQKZFLUjCt0yCpec16XilUgsUaLonSmdMxWljsFvCxkaa1xhXWOT8nV0NvvfD9g6vQ2HGI_MGmecyUkAFN9Kh9SqxhSiuj0PvrGxKNmoL8t6cGS7i3pH0ta9BAfoNSH2zXGv-p_qC8pg21k
Cites_doi 10.1016/j.tust.2020.103493
10.1214/aoms/1177704248
10.1007/978-3-642-15871-1_31
10.1016/B978-0-444-63428-3.50180-6
10.1007/BF00941892
10.1145/2939672.2945367
10.1007/978-3-319-23871-5_3
10.1021/acs.jcim.1c00637
10.1080/01621459.1937.10503522
10.1142/S0129065704001899
10.1145/3582078
10.1145/2858036.2858253
10.24963/ijcai.2019/596
10.1016/j.swevo.2021.100888
10.1007/s10287-020-00376-3
10.1038/s43586-022-00184-w
10.1007/s10994-021-06019-1
10.1007/BFb0020217
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10489-025-06750-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
ExternalDocumentID 10_1007_s10489_025_06750_5
GroupedDBID -~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
77I
77K
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
8FE
8FG
AAAVM
AAOBN
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
AZQEC
BBWZM
BDATZ
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FINBP
FRNLG
FSGXE
GNUQQ
H13
K6V
K7-
KOW
L6V
M0C
M7S
N2Q
NDZJH
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSYQQ
PTHSS
Q2X
R4E
RNI
RZC
RZE
RZK
S26
S28
SCJ
SCLPG
T16
TEORI
ZY4
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-aaeda7e5e165b137efe193b33b871906ebede58fa8f1d9d3f7038468ddaf4dff3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001546861600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:44:29 EST 2025
Sat Nov 29 07:23:50 EST 2025
Sun Sep 28 01:12:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords KPCA
High-dimensional Bayesian optimization
MIMIC algorithm
Variable interaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-aaeda7e5e165b137efe193b33b871906ebede58fa8f1d9d3f7038468ddaf4dff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3237560017
PQPubID 326365
ParticipantIDs proquest_journals_3237560017
crossref_primary_10_1007_s10489_025_06750_5
springer_journals_10_1007_s10489_025_06750_5
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 6750_CR29
6750_CR28
6750_CR1
6750_CR25
6750_CR24
6750_CR27
6750_CR26
6750_CR21
6750_CR20
6750_CR23
6750_CR22
6750_CR18
6750_CR17
6750_CR19
6750_CR14
6750_CR13
6750_CR35
6750_CR16
6750_CR15
6750_CR10
6750_CR32
6750_CR31
6750_CR12
6750_CR34
6750_CR11
6750_CR33
6750_CR9
6750_CR8
6750_CR7
6750_CR30
6750_CR6
6750_CR5
6750_CR4
6750_CR3
6750_CR2
References_xml – ident: 6750_CR12
  doi: 10.1016/j.tust.2020.103493
– ident: 6750_CR24
  doi: 10.1214/aoms/1177704248
– ident: 6750_CR30
  doi: 10.1007/978-3-642-15871-1_31
– ident: 6750_CR32
– ident: 6750_CR18
  doi: 10.1016/B978-0-444-63428-3.50180-6
– ident: 6750_CR34
– ident: 6750_CR16
– ident: 6750_CR33
  doi: 10.1007/BF00941892
– ident: 6750_CR11
  doi: 10.1145/2939672.2945367
– ident: 6750_CR9
– ident: 6750_CR13
– ident: 6750_CR7
  doi: 10.1007/978-3-319-23871-5_3
– ident: 6750_CR8
  doi: 10.1021/acs.jcim.1c00637
– ident: 6750_CR5
– ident: 6750_CR35
  doi: 10.1080/01621459.1937.10503522
– ident: 6750_CR21
– ident: 6750_CR27
– ident: 6750_CR3
– ident: 6750_CR29
– ident: 6750_CR22
  doi: 10.1142/S0129065704001899
– ident: 6750_CR14
  doi: 10.1145/3582078
– ident: 6750_CR6
  doi: 10.1145/2858036.2858253
– ident: 6750_CR20
  doi: 10.24963/ijcai.2019/596
– ident: 6750_CR31
– ident: 6750_CR17
– ident: 6750_CR15
– ident: 6750_CR1
  doi: 10.1016/j.swevo.2021.100888
– ident: 6750_CR19
– ident: 6750_CR4
  doi: 10.1007/s10287-020-00376-3
– ident: 6750_CR25
  doi: 10.1038/s43586-022-00184-w
– ident: 6750_CR10
  doi: 10.1007/s10994-021-06019-1
– ident: 6750_CR23
  doi: 10.1007/BFb0020217
– ident: 6750_CR26
– ident: 6750_CR2
– ident: 6750_CR28
SSID ssj0003301
Score 2.3921416
Snippet The Bayesian Optimization Algorithm, as an effective approach to addressing non-linear global optimization problems, is widely embraced in a myriad of machine...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 915
SubjectTerms Algorithms
Artificial Intelligence
Bayesian analysis
Clustering
Computer Science
Datasets
Decomposition
Design optimization
Global optimization
Machine learning
Machines
Manufacturing
Mechanical Engineering
Methods
Optimization algorithms
Principal components analysis
Processes
Title An improved high-dimensional Bayesian optimization algorithm
URI https://link.springer.com/article/10.1007/s10489-025-06750-5
https://www.proquest.com/docview/3237560017
Volume 55
WOSCitedRecordID wos001546861600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PXhx_sTplBy8aaDtS9oUvExxeJAhqGO3ki4vOnCdbFXwvzfJWqeiBz23PMr3kpfvNe99j5BjkDzUwIEpJTnjYahYiilnwok7yRiA-5Es_euk15ODQXpTNYXN6mr3-krSR-pPzW7clfdEgjmWGzCxTFaEU5txOfpt_yP-2gzdz8mzmQWL43RQtcr8bOPrcbTgmN-uRf1p023-7zs3yHrFLmlnvhw2yRIWW6RZT26g1UbeJmedgo787wTU1CkWM-1U_ucKHfRcvaHrraQTG0_GVaMmVU8Pk-mofBzvkPvu5d3FFavmKLBhlESldQNqlaDAMBZ5CAkatLQtB8httpQGsfWjRiGNkibUqQZjo4ClJVJrZbg2BnZJo5gUuEeoARBBzmVgFPJhHOWIQkMy1DJQQuZJi5zUcGbPc7mMbCGM7IDJLDCZByYTLdKuEc-qrTPLIILE0zBr7LRGePH4d2v7f3v9gKxF3kmumK9NGuX0BQ_J6vC1HM2mR35JvQOhjMWl
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqXnwTQNtk7Qp-DLFMXEOwTn2VtIl0YHrZKuC_71J1joVfdDnlqN8l1y-a-6-AzgmnPqSUIKF4BRT3xc4VjHFzIo78ZAQ6kay9NpRp8P7_fi2aAqbltXu5ZWki9Sfmt2oLe8JGLYs18NsEZaoHbNjc_S73kf8NRm6m5NnMgschnG_aJX52cbX42jOMb9di7rTpln933euw1rBLlFjthw2YEFlm1AtJzegYiNvwVkjQ0P3O0FJZBWLsbQq_zOFDnQu3pTtrURjE09GRaMmEk8P48kwfxxtw33zsnvRwsUcBTwIoiA3blBSRIopP2SpTyKllaFtKSGpyZZiLzR-lIpxLbj2ZSyJNlHA0BIupdBUak12oJKNM7ULSBPCvJRyTwtFB2GQKsUkiQaSe4LxNKrBSQln8jyTy0jmwsgWmMQAkzhgElaDeol4UmydaUICEjkaZoydlgjPH_9ube9vrx_BSqt7007aV53rfVgNnMNsYV8dKvnkRR3A8uA1H04nh255vQPvesiJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RXxxXnE6NQ--aVjbJG0KvszLUBxjeBl7K2mT6MB1Y6uC_94kbd0UfRCfWw7lnOTkO835vgPAMWbEFZhgxDkjiLguR6EMCaJG3In5GBM7kqXXDjod1u-H3TkWv-12L68kc06DUWlKs8ZYqMYc8Y2YVh-PIoN4HUQXwRLRlYxp6rq7733mYl2t25l5uspAvh_2C9rMzza-Hk0zvPntitSePK3q_795HawVqBM282WyARZkugmq5UQHWGzwLXDWTOHA_maQAholYySM-n-u3AHP-bs0nEs40nlmWBA4IX95Gk0G2fNwGzy2rh4urlExXwElXuBlOjxS8EBS6fo0dnEgldRwLsY41lVU6Pg6vkJSpjhTrggFVjo7aLjChOCKCKXwDqiko1TuAqgwpk5MmKO4JInvxVJSgYNEMIdTFgc1cFK6NhrnMhrRTDDZOCbSjomsYyJaA_XS-1GxpaYR9nBg4Zk2dlp6e_b4d2t7f3v9CKx0L1tR-6Zzuw9WPRsv0-9XB5Vs8ioPwHLylg2mk0O70j4AuWTRbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+high-dimensional+Bayesian+optimization+algorithm&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Guan%2C+Juan&rft.au=Wang%2C+Yanhua&rft.date=2025-08-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=13&rft_id=info:doi/10.1007%2Fs10489-025-06750-5&rft.externalDocID=10_1007_s10489_025_06750_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon