Deep learning image compression with multi-channel tANS coding and hardware deployment
Deep learning-based image compression outperforms traditional methods in coding efficiency, but its computational complexity hinders real-time deployment on embedded devices. This paper proposes a heterogeneous computing system combining GPU-accelerated inference and CPU-accelerated entropy coding v...
Uloženo v:
| Vydáno v: | Journal of real-time image processing Ročník 23; číslo 1; s. 1 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2026
Springer Nature B.V |
| Témata: | |
| ISSN: | 1861-8200, 1861-8219 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Deep learning-based image compression outperforms traditional methods in coding efficiency, but its computational complexity hinders real-time deployment on embedded devices. This paper proposes a heterogeneous computing system combining GPU-accelerated inference and CPU-accelerated entropy coding via lookup tables, breaking performance bottlenecks through algorithm-hardware co-design. After GPU acceleration, entropy coding becomes the dominant bottleneck (73% of runtime). To address this, we introduce three key innovations: replacing rANS with tANS encoding, converting dynamic computations into static table lookups, reducing encoding latency; a cache-friendly tANS coding scheme for the 192-channel network outputs, minimizing access latency; an out-of-range symbol encoding method, ensuring lossless and efficient compression. Experiments demonstrate that under high compression ratios, compared with traditional rANS, tANS reduces latency by 77%, with a compression ratio loss of 12.6% while still ensuring image compression quality higher than JPEG2000. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1861-8200 1861-8219 |
| DOI: | 10.1007/s11554-025-01795-8 |