Deep learning image compression with multi-channel tANS coding and hardware deployment

Deep learning-based image compression outperforms traditional methods in coding efficiency, but its computational complexity hinders real-time deployment on embedded devices. This paper proposes a heterogeneous computing system combining GPU-accelerated inference and CPU-accelerated entropy coding v...

Full description

Saved in:
Bibliographic Details
Published in:Journal of real-time image processing Vol. 23; no. 1; p. 1
Main Authors: Zhu, Yaohua, Zhang, Yong, Liu, Ya, Jiang, Jingyu, Zhu, Yanghang, Huang, Mingsheng
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2026
Springer Nature B.V
Subjects:
ISSN:1861-8200, 1861-8219
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep learning-based image compression outperforms traditional methods in coding efficiency, but its computational complexity hinders real-time deployment on embedded devices. This paper proposes a heterogeneous computing system combining GPU-accelerated inference and CPU-accelerated entropy coding via lookup tables, breaking performance bottlenecks through algorithm-hardware co-design. After GPU acceleration, entropy coding becomes the dominant bottleneck (73% of runtime). To address this, we introduce three key innovations: replacing rANS with tANS encoding, converting dynamic computations into static table lookups, reducing encoding latency; a cache-friendly tANS coding scheme for the 192-channel network outputs, minimizing access latency; an out-of-range symbol encoding method, ensuring lossless and efficient compression. Experiments demonstrate that under high compression ratios, compared with traditional rANS, tANS reduces latency by 77%, with a compression ratio loss of 12.6% while still ensuring image compression quality higher than JPEG2000.
AbstractList Deep learning-based image compression outperforms traditional methods in coding efficiency, but its computational complexity hinders real-time deployment on embedded devices. This paper proposes a heterogeneous computing system combining GPU-accelerated inference and CPU-accelerated entropy coding via lookup tables, breaking performance bottlenecks through algorithm-hardware co-design. After GPU acceleration, entropy coding becomes the dominant bottleneck (73% of runtime). To address this, we introduce three key innovations: replacing rANS with tANS encoding, converting dynamic computations into static table lookups, reducing encoding latency; a cache-friendly tANS coding scheme for the 192-channel network outputs, minimizing access latency; an out-of-range symbol encoding method, ensuring lossless and efficient compression. Experiments demonstrate that under high compression ratios, compared with traditional rANS, tANS reduces latency by 77%, with a compression ratio loss of 12.6% while still ensuring image compression quality higher than JPEG2000.
ArticleNumber 1
Author Zhu, Yaohua
Huang, Mingsheng
Zhu, Yanghang
Jiang, Jingyu
Zhang, Yong
Liu, Ya
Author_xml – sequence: 1
  givenname: Yaohua
  surname: Zhu
  fullname: Zhu, Yaohua
  organization: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences
– sequence: 2
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  email: zhangyong@mail.sitp.ac.cn
  organization: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences
– sequence: 3
  givenname: Ya
  surname: Liu
  fullname: Liu, Ya
  organization: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences
– sequence: 4
  givenname: Jingyu
  surname: Jiang
  fullname: Jiang, Jingyu
  organization: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences
– sequence: 5
  givenname: Yanghang
  surname: Zhu
  fullname: Zhu, Yanghang
  organization: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences
– sequence: 6
  givenname: Mingsheng
  surname: Huang
  fullname: Huang, Mingsheng
  organization: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences
BookMark eNp9kMlOwzAQhi1UJNrCC3CyxNlgO3GWY1VWqYIDy9Vy7EmbKrGDnarq2-MSBDcuMyPN_8_yzdDEOgsIXTJ6zSjNbwJjQqSEckEoy0tBihM0ZUXGSMFZOfmtKT1DsxC2lGZ5logp-rgF6HELytvGrnHTqTVg7breQwiNs3jfDBvc7dqhIXqjrIUWD4vn16gxR4OyBm-UN3vlARvoW3fowA7n6LRWbYCLnzxH7_d3b8tHsnp5eFouVkTznA9ElSlozUxBa1FRISqRFkrQmpscBMSTIbaYUqzOyqriKlEpcFopnRqeGJMmc3Q1zu29-9xBGOTW7byNK2XCs0KkMbKo4qNKexeCh1r2Pn7qD5JReeQnR34y8pPf_GQRTcloClFs1-D_Rv_j-gKr1HXb
Cites_doi 10.34768/amcs-2023-0004
10.3390/app15052826
10.1147/rd.282.0135
10.1109/30.125072
10.1117/1.1469618
10.1109/TCSVT.2021.3101953
10.1007/s11554-024-01467-z
10.1109/T-C.1974.223784
10.1006/jvci.1997.0323
10.1007/s11554-023-01346-z
10.1109/TCOM.1972.1091168
10.1109/SMC.2017.8122605
10.3390/s25082491
10.3390/jimaging4050064
10.1016/j.bspc.2012.04.003
10.1109/JRPROC.1952.273898
10.1109/79.952804
10.1109/79.952803
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11554-025-01795-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1861-8219
ExternalDocumentID 10_1007_s11554_025_01795_8
GroupedDBID .VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BSONS
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
MA-
N9A
NPVJJ
NQJWS
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
2VQ
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFFHD
AFGCZ
AFKRA
AGJBK
AGQPQ
AHSBF
AJBLW
ARAPS
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HZ~
IHE
K7-
M4Y
N2Q
NU0
O9-
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c272t-a94ecc1d80f5b055b548a50f2d7e5e861ed801aa1f69bb2a3a4e20bac4d23dd43
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001607385600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-8200
IngestDate Thu Nov 06 13:46:19 EST 2025
Sat Nov 29 06:55:52 EST 2025
Wed Nov 05 01:23:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Entropy coding
Deep learning image compression
tANS coding
Cache-friendly
GPU
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-a94ecc1d80f5b055b548a50f2d7e5e861ed801aa1f69bb2a3a4e20bac4d23dd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3268543261
PQPubID 2044148
ParticipantIDs proquest_journals_3268543261
crossref_primary_10_1007_s11554_025_01795_8
springer_journals_10_1007_s11554_025_01795_8
PublicationCentury 2000
PublicationDate 2026-01-01
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of real-time image processing
PublicationTitleAbbrev J Real-Time Image Proc
PublicationYear 2026
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References 1795_CR7
1795_CR4
1795_CR21
MA Kabir (1795_CR9) 2018; 4
1795_CR22
B Bross (1795_CR8) 2021; 31
B Huang (1795_CR13) 2013; 8
1795_CR14
A Skodras (1795_CR6) 2001; 18
DK Lam (1795_CR11) 2024; 21
BE Usevitch (1795_CR20) 2002; 18
1795_CR3
1795_CR2
J Ballé (1795_CR1) 2016; 25
Y Zhu (1795_CR23) 2025; 25
J Pearl (1795_CR17) 1972; 20
Q Sheng (1795_CR16) 2023; 20
G Mandyam (1795_CR19) 1997; 8
N Ahmed (1795_CR18) 2006; 100
Y Zhu (1795_CR24) 2025; 15
1795_CR15
DA Huffman (1795_CR10) 1952; 40
GG Langdon (1795_CR12) 1984; 28
DS Taubman (1795_CR5) 2002; 11
References_xml – ident: 1795_CR15
  doi: 10.34768/amcs-2023-0004
– volume: 15
  start-page: 2826
  issue: 5
  year: 2025
  ident: 1795_CR24
  publication-title: Appl. Sci.
  doi: 10.3390/app15052826
– volume: 28
  start-page: 135
  issue: 2
  year: 1984
  ident: 1795_CR12
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.282.0135
– ident: 1795_CR4
  doi: 10.1109/30.125072
– volume: 11
  start-page: 286
  issue: 2
  year: 2002
  ident: 1795_CR5
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.1469618
– volume: 31
  start-page: 3736
  issue: 10
  year: 2021
  ident: 1795_CR8
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3101953
– ident: 1795_CR21
– volume: 25
  start-page: 5706
  issue: 12
  year: 2016
  ident: 1795_CR1
  publication-title: IEEE Trans. Image Process.
– ident: 1795_CR22
– volume: 21
  start-page: 84
  issue: 3
  year: 2024
  ident: 1795_CR11
  publication-title: J. Real-Time Image Proc.
  doi: 10.1007/s11554-024-01467-z
– volume: 100
  start-page: 90
  issue: 1
  year: 2006
  ident: 1795_CR18
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1974.223784
– volume: 8
  start-page: 21
  issue: 1
  year: 1997
  ident: 1795_CR19
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1006/jvci.1997.0323
– ident: 1795_CR14
– volume: 20
  start-page: 90
  issue: 5
  year: 2023
  ident: 1795_CR16
  publication-title: J. Real-Time Image Proc.
  doi: 10.1007/s11554-023-01346-z
– volume: 20
  start-page: 411
  issue: 3
  year: 1972
  ident: 1795_CR17
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1972.1091168
– ident: 1795_CR3
– ident: 1795_CR7
  doi: 10.1109/SMC.2017.8122605
– volume: 25
  start-page: 2491
  issue: 8
  year: 2025
  ident: 1795_CR23
  publication-title: Sensors
  doi: 10.3390/s25082491
– ident: 1795_CR2
– volume: 4
  start-page: 64
  issue: 5
  year: 2018
  ident: 1795_CR9
  publication-title: J. Imaging
  doi: 10.3390/jimaging4050064
– volume: 8
  start-page: 59
  issue: 1
  year: 2013
  ident: 1795_CR13
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2012.04.003
– volume: 40
  start-page: 1098
  issue: 9
  year: 1952
  ident: 1795_CR10
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1952.273898
– volume: 18
  start-page: 36
  issue: 5
  year: 2001
  ident: 1795_CR6
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.952804
– volume: 18
  start-page: 22
  issue: 5
  year: 2002
  ident: 1795_CR20
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.952803
SSID ssj0067635
Score 2.363297
Snippet Deep learning-based image compression outperforms traditional methods in coding efficiency, but its computational complexity hinders real-time deployment on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Co-design
Coding
Compression ratio
Computer Graphics
Computer Science
Deep learning
Efficiency
Embedded systems
Entropy
Graphics processing units
Hardware
Image compression
Image Processing and Computer Vision
Image quality
Lookup tables
Multimedia Information Systems
Neural networks
Pattern Recognition
Real time
Signal,Image and Speech Processing
Wavelet transforms
Title Deep learning image compression with multi-channel tANS coding and hardware deployment
URI https://link.springer.com/article/10.1007/s11554-025-01795-8
https://www.proquest.com/docview/3268543261
Volume 23
WOSCitedRecordID wos001607385600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sJT4kTpjBVQMqEIqVN0iO76gShCqNsDfx5eHIhAMsGSxdYrO53v57jtCzqUKMuEjCwbYnitBBkxnacaUdjEHEYu0AnG9G4zHejaL7-umsFVT7d48SZaaum12Q9PHcPwqSpFiep1sKMTRwxh9Mm30b4QQaxhm6Shk3r4FdavMzzS-mqPWx_z2LFpam1H3f_-5Q7Zr75IOK3HYJWuQ75FuM7mB1hd5n0yvARa0nhjxROcvXqtQrC6vqmJziulZWhYbMmwNzuGZFsPxxO9BW0dN7ii2a32YJVAHODQYs4wH5HF083B1y-oJCyzlA14wE0t_hKHTQaZsoJT18Yvxp8fdABR4BoJfCo0Jsyi2lhthJPDAmlQ6LpyT4pB08tccjgjVEEbW6hAQnNRqobVB2yeyzKSeeNQjFw2jk0UFpJG0kMnIssSzLClZluge6TdnkdSXapV4T1Mr6b9hj1w2vG-Xf6d2_LftJ2SL-9C0SrT0SadYvsEp2Uzfi_lqeVYK2ydvOM6X
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CnqxPrFadQ_edCHZbNLNsailYg1Ca-ktbJKJFDSWNurfdycPiqIHveSyyxC-nZ3XzgPgXLpW6hjPgiOV50qUFldpnHJXJb5Ax3fisonroBMEajLxH6qisEWd7V4_SRaSelnsRqqP0_hV4iKXq1VYk8LIYPLRh-Na_nrUYo3cLOXZ3Og3qyqV-ZnGV3W0tDG_PYsW2qbX_N9_bsNWZV2ybskOO7CC2S4068kNrLrIezC-RpyxamLEE5u-GKnCKLu8zIrNGIVnWZFsyKk0OMNnlneDodlDuo7pLGFUrvWh58gSpKHBFGXch8fezeiqz6sJCzwWHZFz7UtzhHairNSNLNeNjP-izemJpIMuGgDRLNla26nnR5HQjpYorEjHMhFOkkjnABrZa4aHwBTaXhQpG6k5aaQcpTTpPidNdWyIey24qIEOZ2UjjXDZMpkgCw1kYQFZqFrQrs8irC7VIjSWpnKl-dotuKyxXy7_Tu3ob9vPYKM_uh-Eg9vg7hg2hXFTy6BLGxr5_A1PYD1-z6eL-WnBeJ8RutFy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFadQ_edGkem3RzLNaiWEqhWnoLm-xEChpLG_Xvu5MHVdGDeMlllyHMzO48dr4ZgHPhWYlrIguOBM8VKCwukzjhntSBg27gxkUT1357MJCTSTD8hOLPq92rJ8kC00BdmtKsNdNJawl8IzPIaRQraZTH5SqsCYpuKF4fjau72Kd2axRySd_mxtZZJWzmZxpfTdPS3_z2RJpbnl79__-8DVul18k6hZrswAqmu1CvJjqw8oDvwbiLOGPlJIlHNn02tw2jqvOiWjZllLZleREiJ8hwik8s6wxGZg_ZQKZSzQjG9a7myDTSMGHKPu7DQ-_6_uqGl5MXeOy0nYyrQBjR2lpaiRdZnheZuEYZqTq6jR4aZqJZspWyEz-IIke5SqBjRSoW2nG1Fu4B1NKXFA-BSbT9KJI2UtPSSLpSKrKJbpKo2BD3G3BRMT2cFQ02wmUrZWJZaFgW5iwLZQOalVzC8rAtQuOBSk-Yr92Ay0oOy-XfqR39bfsZbAy7vbB_O7g7hk3HRK9FLqYJtWz-iiewHr9l08X8NNfBD9Rd2lY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+image+compression+with+multi-channel+tANS+coding+and+hardware+deployment&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Zhu%2C+Yaohua&rft.au=Zhang%2C+Yong&rft.au=Liu%2C+Ya&rft.au=Jiang%2C+Jingyu&rft.date=2026-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1007%2Fs11554-025-01795-8&rft.externalDocID=10_1007_s11554_025_01795_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon