A Single-loop Proximal Subgradient Algorithm for A Class Structured Fractional Programs
In this paper, we investigate a class of nonconvex and nonsmooth fractional programming problems, where the numerator composed of two parts: a convex, nonsmooth function and a differentiable, nonconvex function, and the denominator consists of a convex, nonsmooth function composed of a linear operat...
Uloženo v:
| Vydáno v: | Journal of scientific computing Ročník 104; číslo 3; s. 75 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we investigate a class of nonconvex and nonsmooth fractional programming problems, where the numerator composed of two parts: a convex, nonsmooth function and a differentiable, nonconvex function, and the denominator consists of a convex, nonsmooth function composed of a linear operator. These structured fractional programming problems have broad applications, including CT reconstruction, sparse signal recovery, the single-period optimal portfolio selection problem and standard Sharpe ratio minimization problem. We develop a single-loop proximal subgradient algorithm that alleviates computational complexity by decoupling the evaluation of the linear operator from the nonsmooth component. We prove the global convergence of the proposed single-loop algorithm to an exact lifted stationary point under the Kurdyka-Łojasiewicz assumption. Additionally, we present a practical variant incorporating a nonmonotone line search to improve computational efficiency. Finally, through extensive numerical simulations, we showcase the superiority of the proposed approach over the existing state-of-the-art methods for three applications:
L
1
/
S
κ
sparse signal recovery, limited-angle CT reconstruction, and optimal portfolio selection. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-025-02987-x |