A generalized nonconvex algorithm framework for low-rank and sparse matrix decomposition

The low-rank and sparse matrix decomposition problem is a hot and challenging problem in computer science. In this paper, we consider it as a nonconvex relaxation optimization problem by using a family of nonconvex functions to approximate the rank function and the -norm in low-rank and sparse matri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied intelligence (Dordrecht, Netherlands) Ročník 55; číslo 16; s. 1085
Hlavní autoři: Cui, Angang, Zhang, Lijun, He, Haizhen, Xue, Shengli
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2025
Springer Nature B.V
Témata:
ISSN:0924-669X, 1573-7497
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.