A generalized nonconvex algorithm framework for low-rank and sparse matrix decomposition

The low-rank and sparse matrix decomposition problem is a hot and challenging problem in computer science. In this paper, we consider it as a nonconvex relaxation optimization problem by using a family of nonconvex functions to approximate the rank function and the -norm in low-rank and sparse matri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied intelligence (Dordrecht, Netherlands) Ročník 55; číslo 16; s. 1085
Hlavní autoři: Cui, Angang, Zhang, Lijun, He, Haizhen, Xue, Shengli
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2025
Springer Nature B.V
Témata:
ISSN:0924-669X, 1573-7497
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The low-rank and sparse matrix decomposition problem is a hot and challenging problem in computer science. In this paper, we consider it as a nonconvex relaxation optimization problem by using a family of nonconvex functions to approximate the rank function and the -norm in low-rank and sparse matrix decomposition problem, namely, generalized low-rank and sparse matrix decomposition problem. The essence of this paper is to develop an adaptive algorithm framework with parameters updating for the nonconvex relaxation problem. Firstly, we prove the equivalence between the generalized low-rank and sparse matrix decomposition problem and the regularization generalized low-rank and sparse matrix decomposition problem. This means that the optimal solution of generalized low-rank and sparse matrix decomposition problem can be exactly obtained by solving its regularization minimization problem. Secondly, we present a tractable nonconvex algorithm framework to solve the regularization generalized low-rank and sparse matrix decomposition problem. The convergence analysis of the algorithm framework is provided. More importantly, we also define a very powerful parameter-setting strategy to adapt the optimal parameters in iteration of the proposed algorithm framework. Finally, we test the proposed algorithms on some random low-rank and sparse matrix decomposition problems, and the numerical results verified the effectiveness of the proposed algorithms. In addition, we also extend the proposed algorithms to the image denoising and background modeling from surveillance video.
AbstractList The low-rank and sparse matrix decomposition problem is a hot and challenging problem in computer science. In this paper, we consider it as a nonconvex relaxation optimization problem by using a family of nonconvex functions to approximate the rank function and the -norm in low-rank and sparse matrix decomposition problem, namely, generalized low-rank and sparse matrix decomposition problem. The essence of this paper is to develop an adaptive algorithm framework with parameters updating for the nonconvex relaxation problem. Firstly, we prove the equivalence between the generalized low-rank and sparse matrix decomposition problem and the regularization generalized low-rank and sparse matrix decomposition problem. This means that the optimal solution of generalized low-rank and sparse matrix decomposition problem can be exactly obtained by solving its regularization minimization problem. Secondly, we present a tractable nonconvex algorithm framework to solve the regularization generalized low-rank and sparse matrix decomposition problem. The convergence analysis of the algorithm framework is provided. More importantly, we also define a very powerful parameter-setting strategy to adapt the optimal parameters in iteration of the proposed algorithm framework. Finally, we test the proposed algorithms on some random low-rank and sparse matrix decomposition problems, and the numerical results verified the effectiveness of the proposed algorithms. In addition, we also extend the proposed algorithms to the image denoising and background modeling from surveillance video.
The low-rank and sparse matrix decomposition problem is a hot and challenging problem in computer science. In this paper, we consider it as a nonconvex relaxation optimization problem by using a family of nonconvex functions to approximate the rank function and the -norm in low-rank and sparse matrix decomposition problem, namely, generalized low-rank and sparse matrix decomposition problem. The essence of this paper is to develop an adaptive algorithm framework with parameters updating for the nonconvex relaxation problem. Firstly, we prove the equivalence between the generalized low-rank and sparse matrix decomposition problem and the regularization generalized low-rank and sparse matrix decomposition problem. This means that the optimal solution of generalized low-rank and sparse matrix decomposition problem can be exactly obtained by solving its regularization minimization problem. Secondly, we present a tractable nonconvex algorithm framework to solve the regularization generalized low-rank and sparse matrix decomposition problem. The convergence analysis of the algorithm framework is provided. More importantly, we also define a very powerful parameter-setting strategy to adapt the optimal parameters in iteration of the proposed algorithm framework. Finally, we test the proposed algorithms on some random low-rank and sparse matrix decomposition problems, and the numerical results verified the effectiveness of the proposed algorithms. In addition, we also extend the proposed algorithms to the image denoising and background modeling from surveillance video.
ArticleNumber 1085
Author Zhang, Lijun
Xue, Shengli
Cui, Angang
He, Haizhen
Author_xml – sequence: 1
  givenname: Angang
  orcidid: 0000-0001-6528-1446
  surname: Cui
  fullname: Cui, Angang
  email: cuiangang@yulinu.edu.cn
  organization: School of Mathematics and Statistics, Yulin University
– sequence: 2
  givenname: Lijun
  surname: Zhang
  fullname: Zhang, Lijun
  organization: School of Marine Science and Technology, Northwestern Polytechnical University
– sequence: 3
  givenname: Haizhen
  surname: He
  fullname: He, Haizhen
  organization: School of Foreign Languages, Yulin University
– sequence: 4
  givenname: Shengli
  surname: Xue
  fullname: Xue, Shengli
  organization: School of Mathematics and Statistics, Yulin University
BookMark eNp9kL1OwzAYRS1UJNrCCzBZYjb4L3E8VhV_UiUWkLpZTmKXtIkd7JQWnh5DkNiYvuXe812dGZg47wwAlwRfE4zFTSSYFxJhmiGcS0FQcQKmJBMMCS7FBEyxpBzluVyfgVmMW4wxY5hMwXoBN8aZoNvm09QwYSvv3s0R6nbjQzO8dtAG3ZmDDztofYCtP6Cg3Q5qV8PY6xAN7PQQmiOsTeW73sdmaLw7B6dWt9Fc_N45eLm7fV4-oNXT_eNysUIVFXRAmhdlLXlJqrymtCoEoVrWgtjMpPmksDTtzLillMmSEkOkzTGXTHMhRUU4m4OrkdsH_7Y3cVBbvw8uvVSM5lIKkWU4peiYqoKPMRir-tB0OnwogtW3QTUaVMmg-jGoilRiYymmsNuY8If-p_UFqIR1uw
Cites_doi 10.1137/080738970
10.1007/s11760-018-1367-9
10.1109/TSP.2014.2298839
10.1002/cpa.20042
10.1109/TCSVT.2019.2908833
10.1002/nla.2055
10.1109/TNNLS.2012.2197412
10.1016/j.jvcir.2012.10.006
10.1109/CVPR.2011.5995484
10.4310/CMS.2017.v15.n2.a9
10.1109/TIT.2015.2429611
10.1016/j.ins.2018.08.037
10.1145/1970392.1970395
10.1145/1871437.1871475
10.1007/s10589-017-9898-5
10.1109/TNNLS.2019.2921404
10.1016/j.neucom.2015.10.037
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10489-025-06971-8
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
ExternalDocumentID 10_1007_s10489_025_06971_8
GrantInformation_xml – fundername: Doctoral Research Project of Yulin University
  grantid: 21GK04
– fundername: Shaanxi Fundamental Science Research Project for Mathematics and Physics
  grantid: 23JSQ056
– fundername: National Natural Science Foundation of China
  grantid: 12561096
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Basic Research Program of Shaanxi Province
  grantid: 2024JC-YBMS-036
  funderid: http://dx.doi.org/10.13039/501100017596
GroupedDBID -~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
77I
77K
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
8FE
8FG
AAAVM
AAOBN
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
AZQEC
BBWZM
BDATZ
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FINBP
FRNLG
FSGXE
GNUQQ
H13
K6V
K7-
KOW
L6V
M0C
M7S
N2Q
NDZJH
NU0
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSYQQ
PTHSS
Q2X
R4E
RNI
RZC
RZE
RZK
S26
S28
SCJ
SCLPG
T16
TEORI
ZY4
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-a48bd94b1c6d22c8712a9d71f5e15718f233054f2239b21e19f60493a4797c143
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001609594600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Fri Nov 28 03:12:58 EST 2025
Sat Nov 29 06:52:01 EST 2025
Thu Nov 27 01:17:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Nonconvex algorithm framework
Nonconvex function
regularization Reneralized low-rank and sparse matrix decomposition problem
Low-rank and sparse matrix decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-a48bd94b1c6d22c8712a9d71f5e15718f233054f2239b21e19f60493a4797c143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6528-1446
PQID 3269977550
PQPubID 326365
ParticipantIDs proquest_journals_3269977550
crossref_primary_10_1007_s10489_025_06971_8
springer_journals_10_1007_s10489_025_06971_8
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References F Wei (6971_CR22) 2020; 30
RT Rockafellar (6971_CR23) 2009
I Daubechies (6971_CR9) 2004; 57
J Zhou (6971_CR20) 2022; 48
J Cai (6971_CR10) 2010; 20
X Lin (6971_CR21) 2016; 174
T Wu (6971_CR1) 2018; 468
Z Liu (6971_CR4) 2017; 7
X Yuan (6971_CR7) 2013; 9
6971_CR11
6971_CR13
6971_CR15
6971_CR14
6971_CR17
6971_CR3
EJ Candès (6971_CR5) 2011; 58
6971_CR2
Q Wang (6971_CR18) 2019; 13
6971_CR8
6971_CR6
D Lazzaro (6971_CR12) 2016; 23
H Li (6971_CR16) 2020; 31
IW Selesnick (6971_CR19) 2014; 62
References_xml – volume: 7
  start-page: 600
  issue: 2
  year: 2017
  ident: 6971_CR4
  publication-title: J Appl Anal Comput
– ident: 6971_CR3
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  ident: 6971_CR10
  publication-title: SIAM J Optim
  doi: 10.1137/080738970
– volume: 13
  start-page: 389
  year: 2019
  ident: 6971_CR18
  publication-title: SIViP
  doi: 10.1007/s11760-018-1367-9
– volume: 62
  start-page: 1078
  issue: 5
  year: 2014
  ident: 6971_CR19
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2014.2298839
– volume: 57
  start-page: 1413
  issue: 11
  year: 2004
  ident: 6971_CR9
  publication-title: Commun Pure Appl Math
  doi: 10.1002/cpa.20042
– volume: 30
  start-page: 1497
  issue: 6
  year: 2020
  ident: 6971_CR22
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2019.2908833
– volume: 23
  start-page: 801
  year: 2016
  ident: 6971_CR12
  publication-title: Numer Linear Algebra Appl
  doi: 10.1002/nla.2055
– ident: 6971_CR13
  doi: 10.1109/TNNLS.2012.2197412
– ident: 6971_CR14
  doi: 10.1016/j.jvcir.2012.10.006
– ident: 6971_CR8
– volume-title: Variational Analysis
  year: 2009
  ident: 6971_CR23
– ident: 6971_CR2
  doi: 10.1109/CVPR.2011.5995484
– volume: 9
  start-page: 167
  issue: 1
  year: 2013
  ident: 6971_CR7
  publication-title: Pac J Optim
– ident: 6971_CR15
  doi: 10.4310/CMS.2017.v15.n2.a9
– ident: 6971_CR17
  doi: 10.1109/TIT.2015.2429611
– volume: 48
  start-page: 1782
  issue: 7
  year: 2022
  ident: 6971_CR20
  publication-title: Acta Automatica Sinica
– volume: 468
  start-page: 172
  year: 2018
  ident: 6971_CR1
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.08.037
– volume: 58
  start-page: 1
  issue: 3
  year: 2011
  ident: 6971_CR5
  publication-title: J ACM
  doi: 10.1145/1970392.1970395
– ident: 6971_CR6
  doi: 10.1145/1871437.1871475
– ident: 6971_CR11
  doi: 10.1007/s10589-017-9898-5
– volume: 31
  start-page: 1626
  issue: 5
  year: 2020
  ident: 6971_CR16
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2921404
– volume: 174
  start-page: 1116
  year: 2016
  ident: 6971_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.037
SSID ssj0003301
Score 2.4004009
Snippet The low-rank and sparse matrix decomposition problem is a hot and challenging problem in computer science. In this paper, we consider it as a nonconvex...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1085
SubjectTerms Adaptive algorithms
Algorithms
Approximation
Artificial Intelligence
Computer Science
Decomposition
Machines
Manufacturing
Mechanical Engineering
Optimization
Parameters
Processes
Regularization
Sparse matrices
Sparsity
Title A generalized nonconvex algorithm framework for low-rank and sparse matrix decomposition
URI https://link.springer.com/article/10.1007/s10489-025-06971-8
https://www.proquest.com/docview/3269977550
Volume 55
WOSCitedRecordID wos001609594600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sFQ7iR2PFaJiqhAvZYscP0qlNkVJgIpfzyVNKCAYYI5jWWf77vvk7-4QOnUQdwz1AmIBLwBBAcIqNfeJFyQ9IxSnjumq2YQYDsMoktd1UljeqN2bJ8nKU39KdvNLeQ8LSI9LQUm4itYg3IVlw4ab24cP_wsMveqTB8yCcC6jOlXm5zm-hqMlxvz2LFpFm0H7f-vcQps1usT9xXHYRis23UHtpnMDri_yLor6eLSoNz1-swans7RSn8-xmoxm2bh4nGLXqLYwwFo8mb2Ssr07VqnB4ISy3OJpWd1_jo0tZem19msP3Q8u7y6uSN1jgWgmWEGUHyZG-gnV3DCmgT4xJY2gLrA0gLjlGJgz8B2gCJkwaql0HEiFp3whhQawtY9asEh7gLB1IoH_DFdAGZPAqp4LNfWoCaUImFYddNaYOn5alNKIl0WTS6PFYLS4MlocdlC32Y24vlZ5DFhTAmAFVtVB5431l59_n-3wb8OP0AYrN7DKOeyiVpE922O0rl-KcZ6dVMftHetlzr4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CnqxPrFaNQdvGmjS3c3mWMRSUYtold6WbB610Ie0VYu_3tntrlXRg543G8Ikmfk-8s0MwLHDuGNY1acW8QISFCSsUgcerfpxxQgVMMd12mxCNJthuy1vsqSwca52z58kU0_9KdnNS-Q93KeVQApGw0VY8jBiJRXzb-8ePvwvMvS0Tx4yCxoEsp2lyvw8x9dwNMeY355F02hTL_5vneuwlqFLUpsdhw1YsINNKOadG0h2kbegXSOdWb3p7ps1ZDAcpOrzKVG9znDUnTz2ictVWwRhLekNX2nS3p2ogSHohEZjS_pJdf8pMTaRpWfar224r5-3zho067FANRd8QpUXxkZ6MdOB4VwjfeJKGsGcb5mPcctxNKfvOUQRMubMMukCJBVV5QkpNIKtHSjgIu0uEOtEjP-ZQCFljH2rKi7UrMpMKIXPtSrBSW7q6GlWSiOaF01OjBah0aLUaFFYgnK-G1F2rcYRYk2JgBVZVQlOc-vPP_8-297fhh_BSqN1fRVdXTQv92GVJ5uZ5h-WoTAZPdsDWNYvk-54dJgevXemLtGi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCXGhrKKsPnADi9pN4vhYARUIVCGxqLfI8QKVIEVtWMTXM04TCggOiHMcy5qxPe_Jb2YAdh3GHcOaIbWIF5CgIGGVOgpoM0wbRqiIOa6LZhOi04m7XXnxKYu_ULtXT5KjnAZfpSnLDx6NO_iU-BZ4qQ8PaSOSgtF4EqYDL6T3fP3y5uMuRrZe9MxDlkGjSHbLtJmf5_gamsZ489sTaRF52rX_r3kB5kvUSVqjbbIIEzZbglrV0YGUB3wZui1yO6pD3XuzhmT9rFClvxJ1f9sf9PK7B-IqNRdBuEvu-y_Ut30nKjMEL6fB0JIHX_X_lRjr5eqlJmwFrtvHV4cntOy9QDUXPKcqiFMjg5TpyHCukVZxJY1gLrQsxHjmOJo2DByiC5lyZpl0EZKNpgqEFBpB2CpM4SLtGhDrRIr_mUghlUxDqxou1qzJTCxFyLWqw15l9uRxVGIjGRdT9kZL0GhJYbQkrsNm5ZmkPG7DBDGoRCCLbKsO-5Unxp9_n239b8N3YPbiqJ2cn3bONmCOe18WaYmbMJUPnuwWzOjnvDccbBe78B17GNqG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+nonconvex+algorithm+framework+for+low-rank+and+sparse+matrix+decomposition&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Cui%2C+Angang&rft.au=Zhang%2C+Lijun&rft.au=He%2C+Haizhen&rft.au=Xue%2C+Shengli&rft.date=2025-11-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=16&rft_id=info:doi/10.1007%2Fs10489-025-06971-8&rft.externalDocID=10_1007_s10489_025_06971_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon