A generalized nonconvex algorithm framework for low-rank and sparse matrix decomposition
The low-rank and sparse matrix decomposition problem is a hot and challenging problem in computer science. In this paper, we consider it as a nonconvex relaxation optimization problem by using a family of nonconvex functions to approximate the rank function and the -norm in low-rank and sparse matri...
Saved in:
| Published in: | Applied intelligence (Dordrecht, Netherlands) Vol. 55; no. 16; p. 1085 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.11.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0924-669X, 1573-7497 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The low-rank and sparse matrix decomposition problem is a hot and challenging problem in computer science. In this paper, we consider it as a nonconvex relaxation optimization problem by using a family of nonconvex functions to approximate the rank function and the
-norm in low-rank and sparse matrix decomposition problem, namely, generalized low-rank and sparse matrix decomposition problem. The essence of this paper is to develop an adaptive algorithm framework with parameters updating for the nonconvex relaxation problem. Firstly, we prove the equivalence between the generalized low-rank and sparse matrix decomposition problem and the regularization generalized low-rank and sparse matrix decomposition problem. This means that the optimal solution of generalized low-rank and sparse matrix decomposition problem can be exactly obtained by solving its regularization minimization problem. Secondly, we present a tractable nonconvex algorithm framework to solve the regularization generalized low-rank and sparse matrix decomposition problem. The convergence analysis of the algorithm framework is provided. More importantly, we also define a very powerful parameter-setting strategy to adapt the optimal parameters in iteration of the proposed algorithm framework. Finally, we test the proposed algorithms on some random low-rank and sparse matrix decomposition problems, and the numerical results verified the effectiveness of the proposed algorithms. In addition, we also extend the proposed algorithms to the image denoising and background modeling from surveillance video. |
|---|---|
| AbstractList | The low-rank and sparse matrix decomposition problem is a hot and challenging problem in computer science. In this paper, we consider it as a nonconvex relaxation optimization problem by using a family of nonconvex functions to approximate the rank function and the -norm in low-rank and sparse matrix decomposition problem, namely, generalized low-rank and sparse matrix decomposition problem. The essence of this paper is to develop an adaptive algorithm framework with parameters updating for the nonconvex relaxation problem. Firstly, we prove the equivalence between the generalized low-rank and sparse matrix decomposition problem and the regularization generalized low-rank and sparse matrix decomposition problem. This means that the optimal solution of generalized low-rank and sparse matrix decomposition problem can be exactly obtained by solving its regularization minimization problem. Secondly, we present a tractable nonconvex algorithm framework to solve the regularization generalized low-rank and sparse matrix decomposition problem. The convergence analysis of the algorithm framework is provided. More importantly, we also define a very powerful parameter-setting strategy to adapt the optimal parameters in iteration of the proposed algorithm framework. Finally, we test the proposed algorithms on some random low-rank and sparse matrix decomposition problems, and the numerical results verified the effectiveness of the proposed algorithms. In addition, we also extend the proposed algorithms to the image denoising and background modeling from surveillance video. The low-rank and sparse matrix decomposition problem is a hot and challenging problem in computer science. In this paper, we consider it as a nonconvex relaxation optimization problem by using a family of nonconvex functions to approximate the rank function and the -norm in low-rank and sparse matrix decomposition problem, namely, generalized low-rank and sparse matrix decomposition problem. The essence of this paper is to develop an adaptive algorithm framework with parameters updating for the nonconvex relaxation problem. Firstly, we prove the equivalence between the generalized low-rank and sparse matrix decomposition problem and the regularization generalized low-rank and sparse matrix decomposition problem. This means that the optimal solution of generalized low-rank and sparse matrix decomposition problem can be exactly obtained by solving its regularization minimization problem. Secondly, we present a tractable nonconvex algorithm framework to solve the regularization generalized low-rank and sparse matrix decomposition problem. The convergence analysis of the algorithm framework is provided. More importantly, we also define a very powerful parameter-setting strategy to adapt the optimal parameters in iteration of the proposed algorithm framework. Finally, we test the proposed algorithms on some random low-rank and sparse matrix decomposition problems, and the numerical results verified the effectiveness of the proposed algorithms. In addition, we also extend the proposed algorithms to the image denoising and background modeling from surveillance video. |
| ArticleNumber | 1085 |
| Author | Zhang, Lijun Xue, Shengli Cui, Angang He, Haizhen |
| Author_xml | – sequence: 1 givenname: Angang orcidid: 0000-0001-6528-1446 surname: Cui fullname: Cui, Angang email: cuiangang@yulinu.edu.cn organization: School of Mathematics and Statistics, Yulin University – sequence: 2 givenname: Lijun surname: Zhang fullname: Zhang, Lijun organization: School of Marine Science and Technology, Northwestern Polytechnical University – sequence: 3 givenname: Haizhen surname: He fullname: He, Haizhen organization: School of Foreign Languages, Yulin University – sequence: 4 givenname: Shengli surname: Xue fullname: Xue, Shengli organization: School of Mathematics and Statistics, Yulin University |
| BookMark | eNp9kL1OwzAYRS1UJNrCCzBZYjb4L3E8VhV_UiUWkLpZTmKXtIkd7JQWnh5DkNiYvuXe812dGZg47wwAlwRfE4zFTSSYFxJhmiGcS0FQcQKmJBMMCS7FBEyxpBzluVyfgVmMW4wxY5hMwXoBN8aZoNvm09QwYSvv3s0R6nbjQzO8dtAG3ZmDDztofYCtP6Cg3Q5qV8PY6xAN7PQQmiOsTeW73sdmaLw7B6dWt9Fc_N45eLm7fV4-oNXT_eNysUIVFXRAmhdlLXlJqrymtCoEoVrWgtjMpPmksDTtzLillMmSEkOkzTGXTHMhRUU4m4OrkdsH_7Y3cVBbvw8uvVSM5lIKkWU4peiYqoKPMRir-tB0OnwogtW3QTUaVMmg-jGoilRiYymmsNuY8If-p_UFqIR1uw |
| Cites_doi | 10.1137/080738970 10.1007/s11760-018-1367-9 10.1109/TSP.2014.2298839 10.1002/cpa.20042 10.1109/TCSVT.2019.2908833 10.1002/nla.2055 10.1109/TNNLS.2012.2197412 10.1016/j.jvcir.2012.10.006 10.1109/CVPR.2011.5995484 10.4310/CMS.2017.v15.n2.a9 10.1109/TIT.2015.2429611 10.1016/j.ins.2018.08.037 10.1145/1970392.1970395 10.1145/1871437.1871475 10.1007/s10589-017-9898-5 10.1109/TNNLS.2019.2921404 10.1016/j.neucom.2015.10.037 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10489-025-06971-8 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| ExternalDocumentID | 10_1007_s10489_025_06971_8 |
| GrantInformation_xml | – fundername: Doctoral Research Project of Yulin University grantid: 21GK04 – fundername: Shaanxi Fundamental Science Research Project for Mathematics and Physics grantid: 23JSQ056 – fundername: National Natural Science Foundation of China grantid: 12561096 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Basic Research Program of Shaanxi Province grantid: 2024JC-YBMS-036 funderid: http://dx.doi.org/10.13039/501100017596 |
| GroupedDBID | -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 203 23M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 77I 77K 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 8FE 8FG AAAVM AAOBN AARHV AAYTO AAYXX ABJCF ABQSL ABULA ABUWG ACBXY ADHKG AEBTG AEFIE AEKMD AFEXP AFFHD AFGCZ AFKRA AGGDS AGQPQ AJBLW AZQEC BBWZM BDATZ BEZIV BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO EJD FINBP FRNLG FSGXE GNUQQ H13 K6V K7- KOW L6V M0C M7S N2Q NDZJH NU0 O9- OVD P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PSYQQ PTHSS Q2X R4E RNI RZC RZE RZK S26 S28 SCJ SCLPG T16 TEORI ZY4 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c272t-a48bd94b1c6d22c8712a9d71f5e15718f233054f2239b21e19f60493a4797c143 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001609594600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Fri Nov 28 03:12:58 EST 2025 Sat Nov 29 06:52:01 EST 2025 Thu Nov 27 01:17:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | Nonconvex algorithm framework Nonconvex function regularization Reneralized low-rank and sparse matrix decomposition problem Low-rank and sparse matrix decomposition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-a48bd94b1c6d22c8712a9d71f5e15718f233054f2239b21e19f60493a4797c143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6528-1446 |
| PQID | 3269977550 |
| PQPubID | 326365 |
| ParticipantIDs | proquest_journals_3269977550 crossref_primary_10_1007_s10489_025_06971_8 springer_journals_10_1007_s10489_025_06971_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | F Wei (6971_CR22) 2020; 30 RT Rockafellar (6971_CR23) 2009 I Daubechies (6971_CR9) 2004; 57 J Zhou (6971_CR20) 2022; 48 J Cai (6971_CR10) 2010; 20 X Lin (6971_CR21) 2016; 174 T Wu (6971_CR1) 2018; 468 Z Liu (6971_CR4) 2017; 7 X Yuan (6971_CR7) 2013; 9 6971_CR11 6971_CR13 6971_CR15 6971_CR14 6971_CR17 6971_CR3 EJ Candès (6971_CR5) 2011; 58 6971_CR2 Q Wang (6971_CR18) 2019; 13 6971_CR8 6971_CR6 D Lazzaro (6971_CR12) 2016; 23 H Li (6971_CR16) 2020; 31 IW Selesnick (6971_CR19) 2014; 62 |
| References_xml | – volume: 7 start-page: 600 issue: 2 year: 2017 ident: 6971_CR4 publication-title: J Appl Anal Comput – ident: 6971_CR3 – volume: 20 start-page: 1956 issue: 4 year: 2010 ident: 6971_CR10 publication-title: SIAM J Optim doi: 10.1137/080738970 – volume: 13 start-page: 389 year: 2019 ident: 6971_CR18 publication-title: SIViP doi: 10.1007/s11760-018-1367-9 – volume: 62 start-page: 1078 issue: 5 year: 2014 ident: 6971_CR19 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2014.2298839 – volume: 57 start-page: 1413 issue: 11 year: 2004 ident: 6971_CR9 publication-title: Commun Pure Appl Math doi: 10.1002/cpa.20042 – volume: 30 start-page: 1497 issue: 6 year: 2020 ident: 6971_CR22 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2019.2908833 – volume: 23 start-page: 801 year: 2016 ident: 6971_CR12 publication-title: Numer Linear Algebra Appl doi: 10.1002/nla.2055 – ident: 6971_CR13 doi: 10.1109/TNNLS.2012.2197412 – ident: 6971_CR14 doi: 10.1016/j.jvcir.2012.10.006 – ident: 6971_CR8 – volume-title: Variational Analysis year: 2009 ident: 6971_CR23 – ident: 6971_CR2 doi: 10.1109/CVPR.2011.5995484 – volume: 9 start-page: 167 issue: 1 year: 2013 ident: 6971_CR7 publication-title: Pac J Optim – ident: 6971_CR15 doi: 10.4310/CMS.2017.v15.n2.a9 – ident: 6971_CR17 doi: 10.1109/TIT.2015.2429611 – volume: 48 start-page: 1782 issue: 7 year: 2022 ident: 6971_CR20 publication-title: Acta Automatica Sinica – volume: 468 start-page: 172 year: 2018 ident: 6971_CR1 publication-title: Inf Sci doi: 10.1016/j.ins.2018.08.037 – volume: 58 start-page: 1 issue: 3 year: 2011 ident: 6971_CR5 publication-title: J ACM doi: 10.1145/1970392.1970395 – ident: 6971_CR6 doi: 10.1145/1871437.1871475 – ident: 6971_CR11 doi: 10.1007/s10589-017-9898-5 – volume: 31 start-page: 1626 issue: 5 year: 2020 ident: 6971_CR16 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2921404 – volume: 174 start-page: 1116 year: 2016 ident: 6971_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.037 |
| SSID | ssj0003301 |
| Score | 2.4004009 |
| Snippet | The low-rank and sparse matrix decomposition problem is a hot and challenging problem in computer science. In this paper, we consider it as a nonconvex... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1085 |
| SubjectTerms | Adaptive algorithms Algorithms Approximation Artificial Intelligence Computer Science Decomposition Machines Manufacturing Mechanical Engineering Optimization Parameters Processes Regularization Sparse matrices Sparsity |
| Title | A generalized nonconvex algorithm framework for low-rank and sparse matrix decomposition |
| URI | https://link.springer.com/article/10.1007/s10489-025-06971-8 https://www.proquest.com/docview/3269977550 |
| Volume | 55 |
| WOSCitedRecordID | wos001609594600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sIQdJ47HClExVYiXskWJH6VSaVESoOLXc3YTCggGmBNZ1nf23Xfy3X0IHVOmqAaaQIQNDeGaBSTTJieW29w6rWMttRebEINBnCTyqm4KK5tq9-ZJ0nvqT81u3JX3sJCcRVJQEi-jFQh3sRNsuL65__C_kKF7nTzILEgUyaRulfl5ja_haMExvz2L-mjTb_9vnxtovWaXuDc_DptoyUy2ULtRbsD1Rd5GSQ8P5_OmR29G48l04qvPZzgbD6fFqHp4xLap2sJAa_F4-kqcvDvOJhqDEypKgx_ddP8Z1saVpde1Xzvorn9xe35Jao0FophgFcl4nGvJc6oizZiC9IllUgsKlqMhxC3LAM6QW2ARMmfUUGkjSCqCjAspFJCtXdSCTZo9hKWlgQoDsLFQnAfczX3JqaYy5xpopOygkwbq9Gk-SiNdDE12oKUAWupBS-MO6jbWSOtrVabANSUQVsiqOui0QX_x-ffV9v_2-wFaY86Avuewi1pV8WwO0ap6qUZlceSP2zvPqc9J |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqXnwTQMmTdvlcYhj4hyiU_pW2iaZg_2Qburwr_fStU5FH_S5JYS75O478t13AMeMJ0whTKC-cTUVijs0UjqmRpjY2FnHSqps2ITfbteCQN7kTWHjgu1ePElmkfpTs5uw9B7u0jNP-ozWFmFJYMayivm3dw8f8Rcr9GxOHlYW1PNkkLfK_LzG13Q0x5jfnkWzbNMo_2-f67CWo0tSnx2HDVjQw00oF5MbSH6RtyCok-5Mb7r3phUZjoYZ-3xKon53lPYmjwNiCtYWQVhL-qNXase7k2ioCAahdKzJwKr7T4nSlpaec7-24b5x0Tlv0nzGAk24zyc0ErVYSRGzxFOcJ1g-8Ugqn6HnmIt5y3A0pysMoggZc6aZNB4WFU4kfOknCLZ2oISb1LtApGFO4jroYz8RwhFW9yVmislYKISRsgInhanDp5mURjgXTbZGC9FoYWa0sFaBauGNML9W4xCxpkTAilVVBU4L688__77a3t9-P4KVZue6FbYu21f7sMqtM7P-wyqUJumzPoDl5GXSG6eH2dF7B5D20i0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3oFPHF-YnTqXnwTYMmTdvlcahDUcbAD_ZW2iaZg60bW9Xhr_ema90UfRCfW0K4Nx_nknPPAThmPGYKYQL1jaupUNyhodIRNcJExnodK6kyswm_2ay127I118Wfsd2LJ8lpT4NVaUrSs6EyZ3ONb8JSfbhLzz3pM1pbhCVhifS2Xr9_-jyLsVrPPPOwyqCeJ9t528zPY3y9mmZ489sTaXbzNMr_n_M6rOWok9Sny2QDFnSyCeXC0YHkG3wL2nXSmepQd9-1IskgyVjpExL2OoNRN33uE1OwuQjCXdIbvFFr-07CRBE8nEZjTfpW9X9ClLZ09ZwTtg2PjauHi2uaey_QmPs8paGoRUqKiMWe4jzGsoqHUvkMM8pcvM8Mx9C6wiC6kBFnmknjYbHhhMKXfowgbAdKOEm9C0Qa5sSug7n3YyEcYfVgIqaYjIRCeCkrcFKEPRhOJTaCmZiyDVqAQQuyoAW1ClSLzAT5dhsHiEElAlmstipwWmRi9vn30fb-9vsRrLQuG8HdTfN2H1a5zWXWlliFUjp60QewHL-m3fHoMFuFH4Ml2xE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+nonconvex+algorithm+framework+for+low-rank+and+sparse+matrix+decomposition&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Cui%2C+Angang&rft.au=Zhang%2C+Lijun&rft.au=He%2C+Haizhen&rft.au=Xue%2C+Shengli&rft.date=2025-11-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=16&rft_id=info:doi/10.1007%2Fs10489-025-06971-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_025_06971_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |