Stable fully discrete finite element methods with BGN tangential motion for Willmore flow of planar curves

We propose and analyze stable finite element approximations for Willmore flow of planar curves. The presented schemes are based on a novel weak formulation which combines an evolution equation for curvature with the curvature formulation originally proposed by Barrett, Garcke and Nürnberg (BGN) in (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of scientific computing Ročník 105; číslo 2; s. 45
Hlavní autori: Garcke, Harald, Nürnberg, Robert, Zhao, Quan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2025
Springer Nature B.V
Predmet:
ISSN:0885-7474, 1573-7691
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We propose and analyze stable finite element approximations for Willmore flow of planar curves. The presented schemes are based on a novel weak formulation which combines an evolution equation for curvature with the curvature formulation originally proposed by Barrett, Garcke and Nürnberg (BGN) in (Barrett et al. in J. Comput. Phys. 222:441–467, 2007). Under discretization in space with piecewise linear elements this leads to a stable continuous-in-time semidiscrete scheme, which retains the equidistribution property from the BGN methods. Furthermore, two fully discrete schemes can be shown to satisfy unconditional energy stability estimates. Numerical examples are presented to showcase the good properties of the introduced schemes, including an asymptotic equidistribution of vertices.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-025-03068-9