A walrus optimization algorithm for sustainable internet of robotic things based on Q-Learning

The Internet of Robotic Things (IoRT) integrates cloud robotics, artificial intelligence, and the Internet of Things to work collaboratively and is popularly employed in various autonomous systems. However, these devices often struggle to meet real-time applicability due to limited battery, low comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing Jg. 81; H. 15; S. 1464
Hauptverfasser: Varshney, Hirdesh, Singh, Avtar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 14.10.2025
Springer Nature B.V
Schlagworte:
ISSN:1573-0484, 0920-8542, 1573-0484
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Internet of Robotic Things (IoRT) integrates cloud robotics, artificial intelligence, and the Internet of Things to work collaboratively and is popularly employed in various autonomous systems. However, these devices often struggle to meet real-time applicability due to limited battery, low computational capability, and high latency, which necessitate high-performance computing and distributed architectures. Therefore, the present work develops an efficient task offloading mechanism by considering a multi-objective optimization approach to reduce energy consumption based on sampling rate, transmission interval, and data processing while achieving the deadline constraints and load balancing. The methodology is executed via fog computing to lower the communication overhead among edge devices and the cloud. Further, the Q -learning approach is integrated with the walrus optimization algorithm to develop Q WaOA. This integration helps improve the balance between exploration–exploitation by incorporating the intelligence of reinforcement learning. The effectiveness of the proposed work is confirmed by simulations, which show that the proposed strategy reduces the energy requirements by at least 27.14% compared to existing methods. The experimental findings validate the proposed schema compared to other existing approaches in enhancing the performance of IoRT devices.
AbstractList The Internet of Robotic Things (IoRT) integrates cloud robotics, artificial intelligence, and the Internet of Things to work collaboratively and is popularly employed in various autonomous systems. However, these devices often struggle to meet real-time applicability due to limited battery, low computational capability, and high latency, which necessitate high-performance computing and distributed architectures. Therefore, the present work develops an efficient task offloading mechanism by considering a multi-objective optimization approach to reduce energy consumption based on sampling rate, transmission interval, and data processing while achieving the deadline constraints and load balancing. The methodology is executed via fog computing to lower the communication overhead among edge devices and the cloud. Further, the Q-learning approach is integrated with the walrus optimization algorithm to develop QWaOA. This integration helps improve the balance between exploration–exploitation by incorporating the intelligence of reinforcement learning. The effectiveness of the proposed work is confirmed by simulations, which show that the proposed strategy reduces the energy requirements by at least 27.14% compared to existing methods. The experimental findings validate the proposed schema compared to other existing approaches in enhancing the performance of IoRT devices.
The Internet of Robotic Things (IoRT) integrates cloud robotics, artificial intelligence, and the Internet of Things to work collaboratively and is popularly employed in various autonomous systems. However, these devices often struggle to meet real-time applicability due to limited battery, low computational capability, and high latency, which necessitate high-performance computing and distributed architectures. Therefore, the present work develops an efficient task offloading mechanism by considering a multi-objective optimization approach to reduce energy consumption based on sampling rate, transmission interval, and data processing while achieving the deadline constraints and load balancing. The methodology is executed via fog computing to lower the communication overhead among edge devices and the cloud. Further, the Q -learning approach is integrated with the walrus optimization algorithm to develop Q WaOA. This integration helps improve the balance between exploration–exploitation by incorporating the intelligence of reinforcement learning. The effectiveness of the proposed work is confirmed by simulations, which show that the proposed strategy reduces the energy requirements by at least 27.14% compared to existing methods. The experimental findings validate the proposed schema compared to other existing approaches in enhancing the performance of IoRT devices.
ArticleNumber 1464
Author Varshney, Hirdesh
Singh, Avtar
Author_xml – sequence: 1
  givenname: Hirdesh
  surname: Varshney
  fullname: Varshney, Hirdesh
  email: hirdeshv.cs.21@nitj.ac.in
  organization: Department of Computer Science and Engineering, Dr B. R. Ambedkar National Institute of Technology Jalandhar
– sequence: 2
  givenname: Avtar
  surname: Singh
  fullname: Singh, Avtar
  organization: Department of Computer Science and Engineering, Dr B. R. Ambedkar National Institute of Technology Jalandhar
BookMark eNp9kE9LAzEQxYNUsFa_gKeA59VJstnsHkvxHxRE0Kshu5u0KW1Skyyin97UFfTkaR7De2-Y3ymaOO80QhcErgiAuI6EUCoKoLwA0TBWwBGaEi6yKOty8kefoNMYNwBQMsGm6HWO39U2DBH7fbI7-6mS9Q6r7coHm9Y7bHzAcYhJWafarcbWJR2cTtgbHHzrk-1wWlu3irhVUfc4p5-KpVbB5eUZOjZqG_X5z5yhl9ub58V9sXy8e1jMl0VHBU1F04PmpqedKmmtoSQGRMUrppjpCFS8p0prYXjX88rwpikNM1XdHxwtJ23PZuhy7N0H_zbomOTGD8Hlk5LRChqoy_zwDNHR1QUfY9BG7oPdqfAhCcgDRzlylJmj_OYoIYfYGIrZ7FY6_Fb_k_oCHDV4hw
Cites_doi 10.1109/TVT.2020.3018817
10.1109/TVT.2020.2975056
10.1109/JIOT.2022.3150070
10.1109/ICNN.1995.488968
10.1016/J.ESWA.2023.122413
10.1007/S10586-024-04702-1/FIGURES/16
10.1007/S11227-024-06034-8/TABLES/3
10.1109/TWC.2019.2943563
10.1109/TASE.2020.3000946
10.1109/JIOT.2024.3349538
10.1109/CEC.1999.782657
10.1109/CEC.2018.8477769
10.32604/csse.2023.032737
10.1080/0305215X.2017.1361418
10.3390/FI14090265
10.1016/j.rcim.2021.102240
10.1111/exsy.13224
10.1007/s10723-025-09809-2
10.1007/s11227-022-04728-5
10.1109/ACCESS.2024.3357122
10.1109/TWC.2020.2968426
10.1109/TWC.2019.2947046
10.1155/2022/5349571
10.1016/J.FUTURE.2018.04.057
10.1007/S10922-021-09622-8/FIGURES/9
10.1109/TMC.2025.3582755
10.1109/ACCESS.2019.2941229
10.1109/WCSP49889.2020.9299850
10.1016/j.advengsoft.2017.07.002
10.1007/978-3-319-91341-4_4
10.1109/TWC.2023.3322776
10.1038/s41598-023-35863-5
10.1109/4235.585893
10.1007/s11227-023-05387-w
10.1016/J.ASOC.2024.111391
10.1007/s10586-024-04787-8
10.1109/TMC.2019.2891736
10.1016/j.advengsoft.2013.12.007
10.1016/J.FUTURE.2019.09.035
10.3390/electronics11142244
10.1007/s11227-024-06603-x
10.1007/S12652-021-03561-7/FIGURES/6
10.3390/INFO11020083
10.1007/S10586-023-04193-6/FIGURES/12
10.1016/J.COMNET.2020.107334
10.1109/TWC.2019.2944165
10.1016/j.iot.2024.101120
10.1186/S13638-021-01984-6/FIGURES/6
10.1109/TVT.2020.2978027
10.1109/ACIT50332.2020.9300093
10.1007/S00500-023-09159-9/TABLES/6
10.1016/J.ASOC.2023.110776
10.3390/s21082628
10.1016/j.advengsoft.2016.01.008
10.1109/TVT.2017.2740724
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-025-07933-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
ExternalDocumentID 10_1007_s11227_025_07933_0
GroupedDBID -~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
MA-
N9A
NB0
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
BGNMA
CCPQU
CITATION
M4Y
JQ2
ID FETCH-LOGICAL-c272t-9d0e5fd2ca428e041f076563a3fc1065d2aee7f5cd56f5994f3f68d563ab51bd3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001594665500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-0484
0920-8542
IngestDate Sat Oct 18 23:25:02 EDT 2025
Sat Nov 29 07:15:55 EST 2025
Wed Oct 15 10:50:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Internet of robotic things
Multi-objective optimization
Load balancing
Cloud robotics
Task offloading
Energy optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-9d0e5fd2ca428e041f076563a3fc1065d2aee7f5cd56f5994f3f68d563ab51bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3260908404
PQPubID 2043774
ParticipantIDs proquest_journals_3260908404
crossref_primary_10_1007_s11227_025_07933_0
springer_journals_10_1007_s11227_025_07933_0
PublicationCentury 2000
PublicationDate 20251014
PublicationDateYYYYMMDD 2025-10-14
PublicationDate_xml – month: 10
  year: 2025
  text: 20251014
  day: 14
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 7933_CR1
Z Li (7933_CR16) 2020; 11
U Saleem (7933_CR17) 2020; 69
W Sun (7933_CR21) 2020; 69
S Mirjalili (7933_CR44) 2016; 95
J Cheng (7933_CR22) 2021; 2021
P Singh (7933_CR26) 2022; 30
M Huang (7933_CR27) 2021; 21
S Kashyap (7933_CR25) 2025; 23
S Singh (7933_CR31) 2024; 154
A Mahapatra (7933_CR32) 2024; 12
A Etefaghi (7933_CR36) 2023; 79
H Xiao (7933_CR30) 2024
G Li (7933_CR40) 2020; 19
7933_CR45
7933_CR42
C Shu (7933_CR41) 2022; 11
A Hazra (7933_CR24) 2023; 10
H Sharma (7933_CR46) 2019; 779
H Gupta (7933_CR9) 2023; 147
M Aazam (7933_CR6) 2018; 87
B Jang (7933_CR50) 2019; 7
7933_CR18
J Yan (7933_CR28) 2020; 19
Y Duan (7933_CR14) 2024; 80
M Han (7933_CR48) 2024; 239
H Gupta (7933_CR10) 2022
B Xie (7933_CR35) 2025; 81
H Cao (7933_CR39) 2018; 67
H Yuan (7933_CR7) 2021; 18
TT Nguyen (7933_CR29) 2020; 19
S Kashyap (7933_CR37) 2025; 28
V Vijayalakshmi (7933_CR49) 2023; 27
7933_CR52
A Sayeed (7933_CR3) 2022; 14
V Dawarka (7933_CR5) 2022; 73
A Shahidinejad (7933_CR12) 2022; 13
S Zhou (7933_CR20) 2020; 178
S Kushwaha (7933_CR55) 2025; 28
S Mirjalili (7933_CR53) 2017; 114
R Chen (7933_CR34) 2024; 23
Y Miao (7933_CR19) 2020; 102
J Zhou (7933_CR54) 2018; 50
Z Wu (7933_CR8) 2020; 69
R Chen (7933_CR33) 2025
DH Wolpert (7933_CR13) 1997; 1
S Mirjalili (7933_CR43) 2014; 69
P Trojovský (7933_CR47) 2023
C Yi (7933_CR38) 2020; 19
K Sreelakshmy (7933_CR51) 2023; 45
Y Han (7933_CR23) 2022; 2022
N El Menbawy (7933_CR2) 2023; 79
M Sandhu (7933_CR4) 2024; 25
M Sheng (7933_CR15) 2020; 19
N Kumari (7933_CR11) 2024; 27
References_xml – volume: 69
  start-page: 12240
  year: 2020
  ident: 7933_CR21
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.3018817
– volume: 69
  start-page: 4417
  year: 2020
  ident: 7933_CR8
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2975056
– volume: 10
  start-page: 3944
  year: 2023
  ident: 7933_CR24
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3150070
– ident: 7933_CR42
  doi: 10.1109/ICNN.1995.488968
– volume: 239
  year: 2024
  ident: 7933_CR48
  publication-title: Expert Syst Appl
  doi: 10.1016/J.ESWA.2023.122413
– volume: 28
  start-page: 1
  year: 2025
  ident: 7933_CR55
  publication-title: Cluster Comput
  doi: 10.1007/S10586-024-04702-1/FIGURES/16
– volume: 80
  start-page: 14752
  year: 2024
  ident: 7933_CR14
  publication-title: J Supercomput
  doi: 10.1007/S11227-024-06034-8/TABLES/3
– volume: 19
  start-page: 235
  year: 2020
  ident: 7933_CR28
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2019.2943563
– volume: 18
  start-page: 1277
  year: 2021
  ident: 7933_CR7
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2020.3000946
– year: 2024
  ident: 7933_CR30
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2024.3349538
– ident: 7933_CR45
  doi: 10.1109/CEC.1999.782657
– ident: 7933_CR52
  doi: 10.1109/CEC.2018.8477769
– volume: 45
  start-page: 2483
  issue: 3
  year: 2023
  ident: 7933_CR51
  publication-title: Comput Syst Sci Eng
  doi: 10.32604/csse.2023.032737
– volume: 50
  start-page: 949
  year: 2018
  ident: 7933_CR54
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2017.1361418
– volume: 14
  year: 2022
  ident: 7933_CR3
  publication-title: Future Internet
  doi: 10.3390/FI14090265
– volume: 73
  year: 2022
  ident: 7933_CR5
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2021.102240
– year: 2022
  ident: 7933_CR10
  publication-title: Expert Syst
  doi: 10.1111/exsy.13224
– volume: 23
  start-page: 22
  year: 2025
  ident: 7933_CR25
  publication-title: J Grid Comput
  doi: 10.1007/s10723-025-09809-2
– volume: 79
  start-page: 1592
  year: 2023
  ident: 7933_CR36
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04728-5
– volume: 12
  start-page: 14334
  year: 2024
  ident: 7933_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3357122
– volume: 19
  start-page: 2813
  year: 2020
  ident: 7933_CR15
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2020.2968426
– volume: 19
  start-page: 624
  year: 2020
  ident: 7933_CR40
  publication-title: IEEE Trans Wireless Commun
  doi: 10.1109/TWC.2019.2947046
– volume: 2022
  start-page: 5349571
  year: 2022
  ident: 7933_CR23
  publication-title: Wirel Commun Mob Comput
  doi: 10.1155/2022/5349571
– volume: 87
  start-page: 278
  year: 2018
  ident: 7933_CR6
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/J.FUTURE.2018.04.057
– volume: 30
  start-page: 1
  year: 2022
  ident: 7933_CR26
  publication-title: J Netw Syst Manag
  doi: 10.1007/S10922-021-09622-8/FIGURES/9
– year: 2025
  ident: 7933_CR33
  publication-title: IEEE Trans Mob Comput
  doi: 10.1109/TMC.2025.3582755
– volume: 7
  start-page: 133653
  year: 2019
  ident: 7933_CR50
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941229
– ident: 7933_CR18
  doi: 10.1109/WCSP49889.2020.9299850
– volume: 114
  start-page: 163
  year: 2017
  ident: 7933_CR53
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 779
  start-page: 43
  year: 2019
  ident: 7933_CR46
  publication-title: Stud Comput Intell
  doi: 10.1007/978-3-319-91341-4_4
– volume: 23
  start-page: 4815
  year: 2024
  ident: 7933_CR34
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2023.3322776
– year: 2023
  ident: 7933_CR47
  publication-title: Sci Reports
  doi: 10.1038/s41598-023-35863-5
– volume: 1
  start-page: 67
  year: 1997
  ident: 7933_CR13
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 79
  start-page: 20076
  year: 2023
  ident: 7933_CR2
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05387-w
– volume: 154
  year: 2024
  ident: 7933_CR31
  publication-title: Appl Soft Comput
  doi: 10.1016/J.ASOC.2024.111391
– volume: 28
  start-page: 1
  year: 2025
  ident: 7933_CR37
  publication-title: Cluster Comput
  doi: 10.1007/s10586-024-04787-8
– volume: 19
  start-page: 29
  year: 2020
  ident: 7933_CR38
  publication-title: IEEE Trans Mob Comput
  doi: 10.1109/TMC.2019.2891736
– volume: 69
  start-page: 46
  year: 2014
  ident: 7933_CR43
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 102
  start-page: 925
  year: 2020
  ident: 7933_CR19
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/J.FUTURE.2019.09.035
– volume: 11
  start-page: 2244
  year: 2022
  ident: 7933_CR41
  publication-title: Electronics
  doi: 10.3390/electronics11142244
– volume: 81
  start-page: 1
  year: 2025
  ident: 7933_CR35
  publication-title: J Supercomput
  doi: 10.1007/s11227-024-06603-x
– volume: 13
  start-page: 2785
  year: 2022
  ident: 7933_CR12
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/S12652-021-03561-7/FIGURES/6
– volume: 11
  issue: 2
  year: 2020
  ident: 7933_CR16
  publication-title: Information
  doi: 10.3390/INFO11020083
– volume: 27
  start-page: 4589
  year: 2024
  ident: 7933_CR11
  publication-title: Cluster Comput
  doi: 10.1007/S10586-023-04193-6/FIGURES/12
– volume: 178
  year: 2020
  ident: 7933_CR20
  publication-title: Comput Networks
  doi: 10.1016/J.COMNET.2020.107334
– volume: 19
  start-page: 293
  year: 2020
  ident: 7933_CR29
  publication-title: IEEE Trans Wireless Commun
  doi: 10.1109/TWC.2019.2944165
– volume: 25
  year: 2024
  ident: 7933_CR4
  publication-title: Internet of Things (Netherlands)
  doi: 10.1016/j.iot.2024.101120
– volume: 2021
  start-page: 1
  year: 2021
  ident: 7933_CR22
  publication-title: Eurasip J Wirel Commun Netw
  doi: 10.1186/S13638-021-01984-6/FIGURES/6
– volume: 69
  start-page: 4472
  year: 2020
  ident: 7933_CR17
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2978027
– ident: 7933_CR1
  doi: 10.1109/ACIT50332.2020.9300093
– volume: 27
  start-page: 17473
  year: 2023
  ident: 7933_CR49
  publication-title: Soft Comput
  doi: 10.1007/S00500-023-09159-9/TABLES/6
– volume: 147
  year: 2023
  ident: 7933_CR9
  publication-title: Appl Soft Comput
  doi: 10.1016/J.ASOC.2023.110776
– volume: 21
  start-page: 1
  year: 2021
  ident: 7933_CR27
  publication-title: Sensors
  doi: 10.3390/s21082628
– volume: 95
  start-page: 51
  year: 2016
  ident: 7933_CR44
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 67
  start-page: 752
  year: 2018
  ident: 7933_CR39
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2017.2740724
SSID ssj0004373
Score 2.3885016
Snippet The Internet of Robotic Things (IoRT) integrates cloud robotics, artificial intelligence, and the Internet of Things to work collaboratively and is popularly...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1464
SubjectTerms Algorithms
Artificial intelligence
Compilers
Computation offloading
Computer Science
Cost control
Data processing
Edge computing
Energy consumption
Energy efficiency
Energy requirements
Internet of Things
Interpreters
Machine learning
Multiple objective analysis
Neural networks
Optimization
Performance enhancement
Processor Architectures
Programming Languages
Real time
Robot learning
Robotics
Title A walrus optimization algorithm for sustainable internet of robotic things based on Q-Learning
URI https://link.springer.com/article/10.1007/s11227-025-07933-0
https://www.proquest.com/docview/3260908404
Volume 81
WOSCitedRecordID wos001594665500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYaU8RVFBHtjAkhPHdT1WiIqpAvFQJyK_Uiq1DUpS-PucU0cRCAaY47Ois333XZzvO4QuGPMq-wqiH-RXksR2SDRnlGgtoFpgFiB9UjebEJPJcDqVd4EUVjZ_uzdXknWkbsluURwL4tuvelE3RqBQ3-ZebcbX6A_PLRuSCRboMT_bfU1BLa78dhVaZ5hx93_vtod2A6LEo80W2EdbbnWAuk23BhwO7yF6GeEPtSjWJc4hTCwD_xKrxSwv5tXrEgN8xWXLp8Lz-mOhq3Ce4SLXOcyPq7rNJ_a5z2KwvidBoHV2hJ7GN4_XtyR0VyAmFnFFpKWOZzY2CioQR5MoowLAHVMsM1Anchsr50TGjeWDjEuZZCwbDK0foXmkLTtGnVW-cicIy4FTgnMz0AAmo0hJAyZGJl5vTlMneuiycXj6thHRSFu5ZO-6FFyX1q5LaQ_1mzVJw4EqU0CZVFKoRpMeumrWoH38-2ynfxveR52qWLsztGPeq3lZnNd76xMiWMws
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA4yBX1x_sTp1Dz4poG0aZr1cYhj4hyKU_ZkaZtkDrZV2k7_fS81pSj6oM_NhXCX3H3X5LtD6IwxU2U_Au8H8ZV4ruyQmDNK4lhAtsAkQHqvbDYhhsPOeBzcWVJYXr12r64kS09dk90c1xXEtF81Rd0YgUR91TNtdkyO_vBUsyGZYJYe87Pc1xBU48pvV6FlhOk1_7e2LbRpESXufm6BbbSiFjuoWXVrwPbw7qLnLn6PZtkyxym4ibnlX-JoNkmzafEyxwBfcV7zqfC0_FmoCpxqnKVxCvPjomzziU3skxik74kt0DrZQ4-9q9Fln9juCiRxhVuQQFLFtXSTCDIQRT1HUwHgjkVMJ5AnculGSgnNE8l9zYPA00z7HWlGxNyJJdtHjUW6UAcIB76KBOeJHwOYdJwoSEAkCTxTby6mSrTQeaXw8PWziEZYl0s2qgtBdWGpupC2ULuySWgPVB4CyqQBhWzUa6GLygb1599nO_zb8FO03h_dDsLB9fDmCG24xqTm_YrXRo0iW6pjtJa8FdM8Oyk33Qck2dEe
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRXxxXnE6NQ--aVibNM36ONShKGNe2ZOlbZI52NbRdvr3PelaqqIP4nOTEE4u5zvN-b6D0AljRmU_gNsP_CtxqGyTkDOLhKGAaIFJgPROXmxC9HrtwcDrf2Lx59nu5ZPkgtNgVJqmWWsmdasivtmUCmJKsRqBN0YgaF92IJIxSV33D88VM5IJVlBlfu731R1VGPPbs2jubbr1_89zA60XSBN3FltjEy2p6Raql1UccHGot9FLB78H42Se4hiuj0nBy8TBeBgno-x1ggHW4rTiWeFR_hNRZTjWOInDGMbHWV7-ExufKDH0viOFcOtwBz11Lx_Pr0hRdYFEVNCMeNJSXEsaBRCZKMuxtSUA9LGA6QjiRy5poJTQPJLc1dzzHM2025amRcjtULJdVJvGU7WHsOeqQHAeuSGATNsOvAi6RJ5jdOhCS4kGOi2N788W4hp-JaNsTOeD6fzcdL7VQM1yffzioKU-oE_LsyBKdRrorFyP6vPvo-3_rfkxWu1fdP3b697NAVqjZkVNWovTRLUsmatDtBK9ZaM0Ocr33wfSn9oC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+walrus+optimization+algorithm+for+sustainable+internet+of+robotic+things+based+on+Q-Learning&rft.jtitle=The+Journal+of+supercomputing&rft.au=Varshney%2C+Hirdesh&rft.au=Singh%2C+Avtar&rft.date=2025-10-14&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=81&rft.issue=15&rft.spage=1464&rft_id=info:doi/10.1007%2Fs11227-025-07933-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon