A walrus optimization algorithm for sustainable internet of robotic things based on Q-Learning
The Internet of Robotic Things (IoRT) integrates cloud robotics, artificial intelligence, and the Internet of Things to work collaboratively and is popularly employed in various autonomous systems. However, these devices often struggle to meet real-time applicability due to limited battery, low comp...
Gespeichert in:
| Veröffentlicht in: | The Journal of supercomputing Jg. 81; H. 15; S. 1464 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
14.10.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1573-0484, 0920-8542, 1573-0484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Internet of Robotic Things (IoRT) integrates cloud robotics, artificial intelligence, and the Internet of Things to work collaboratively and is popularly employed in various autonomous systems. However, these devices often struggle to meet real-time applicability due to limited battery, low computational capability, and high latency, which necessitate high-performance computing and distributed architectures. Therefore, the present work develops an efficient task offloading mechanism by considering a multi-objective optimization approach to reduce energy consumption based on sampling rate, transmission interval, and data processing while achieving the deadline constraints and load balancing. The methodology is executed via fog computing to lower the communication overhead among edge devices and the cloud. Further, the
Q
-learning approach is integrated with the walrus optimization algorithm to develop
Q
WaOA. This integration helps improve the balance between exploration–exploitation by incorporating the intelligence of reinforcement learning. The effectiveness of the proposed work is confirmed by simulations, which show that the proposed strategy reduces the energy requirements by at least 27.14% compared to existing methods. The experimental findings validate the proposed schema compared to other existing approaches in enhancing the performance of IoRT devices. |
|---|---|
| AbstractList | The Internet of Robotic Things (IoRT) integrates cloud robotics, artificial intelligence, and the Internet of Things to work collaboratively and is popularly employed in various autonomous systems. However, these devices often struggle to meet real-time applicability due to limited battery, low computational capability, and high latency, which necessitate high-performance computing and distributed architectures. Therefore, the present work develops an efficient task offloading mechanism by considering a multi-objective optimization approach to reduce energy consumption based on sampling rate, transmission interval, and data processing while achieving the deadline constraints and load balancing. The methodology is executed via fog computing to lower the communication overhead among edge devices and the cloud. Further, the Q-learning approach is integrated with the walrus optimization algorithm to develop QWaOA. This integration helps improve the balance between exploration–exploitation by incorporating the intelligence of reinforcement learning. The effectiveness of the proposed work is confirmed by simulations, which show that the proposed strategy reduces the energy requirements by at least 27.14% compared to existing methods. The experimental findings validate the proposed schema compared to other existing approaches in enhancing the performance of IoRT devices. The Internet of Robotic Things (IoRT) integrates cloud robotics, artificial intelligence, and the Internet of Things to work collaboratively and is popularly employed in various autonomous systems. However, these devices often struggle to meet real-time applicability due to limited battery, low computational capability, and high latency, which necessitate high-performance computing and distributed architectures. Therefore, the present work develops an efficient task offloading mechanism by considering a multi-objective optimization approach to reduce energy consumption based on sampling rate, transmission interval, and data processing while achieving the deadline constraints and load balancing. The methodology is executed via fog computing to lower the communication overhead among edge devices and the cloud. Further, the Q -learning approach is integrated with the walrus optimization algorithm to develop Q WaOA. This integration helps improve the balance between exploration–exploitation by incorporating the intelligence of reinforcement learning. The effectiveness of the proposed work is confirmed by simulations, which show that the proposed strategy reduces the energy requirements by at least 27.14% compared to existing methods. The experimental findings validate the proposed schema compared to other existing approaches in enhancing the performance of IoRT devices. |
| ArticleNumber | 1464 |
| Author | Varshney, Hirdesh Singh, Avtar |
| Author_xml | – sequence: 1 givenname: Hirdesh surname: Varshney fullname: Varshney, Hirdesh email: hirdeshv.cs.21@nitj.ac.in organization: Department of Computer Science and Engineering, Dr B. R. Ambedkar National Institute of Technology Jalandhar – sequence: 2 givenname: Avtar surname: Singh fullname: Singh, Avtar organization: Department of Computer Science and Engineering, Dr B. R. Ambedkar National Institute of Technology Jalandhar |
| BookMark | eNp9kE9LAzEQxYNUsFa_gKeA59VJstnsHkvxHxRE0Kshu5u0KW1Skyyin97UFfTkaR7De2-Y3ymaOO80QhcErgiAuI6EUCoKoLwA0TBWwBGaEi6yKOty8kefoNMYNwBQMsGm6HWO39U2DBH7fbI7-6mS9Q6r7coHm9Y7bHzAcYhJWafarcbWJR2cTtgbHHzrk-1wWlu3irhVUfc4p5-KpVbB5eUZOjZqG_X5z5yhl9ub58V9sXy8e1jMl0VHBU1F04PmpqedKmmtoSQGRMUrppjpCFS8p0prYXjX88rwpikNM1XdHxwtJ23PZuhy7N0H_zbomOTGD8Hlk5LRChqoy_zwDNHR1QUfY9BG7oPdqfAhCcgDRzlylJmj_OYoIYfYGIrZ7FY6_Fb_k_oCHDV4hw |
| Cites_doi | 10.1109/TVT.2020.3018817 10.1109/TVT.2020.2975056 10.1109/JIOT.2022.3150070 10.1109/ICNN.1995.488968 10.1016/J.ESWA.2023.122413 10.1007/S10586-024-04702-1/FIGURES/16 10.1007/S11227-024-06034-8/TABLES/3 10.1109/TWC.2019.2943563 10.1109/TASE.2020.3000946 10.1109/JIOT.2024.3349538 10.1109/CEC.1999.782657 10.1109/CEC.2018.8477769 10.32604/csse.2023.032737 10.1080/0305215X.2017.1361418 10.3390/FI14090265 10.1016/j.rcim.2021.102240 10.1111/exsy.13224 10.1007/s10723-025-09809-2 10.1007/s11227-022-04728-5 10.1109/ACCESS.2024.3357122 10.1109/TWC.2020.2968426 10.1109/TWC.2019.2947046 10.1155/2022/5349571 10.1016/J.FUTURE.2018.04.057 10.1007/S10922-021-09622-8/FIGURES/9 10.1109/TMC.2025.3582755 10.1109/ACCESS.2019.2941229 10.1109/WCSP49889.2020.9299850 10.1016/j.advengsoft.2017.07.002 10.1007/978-3-319-91341-4_4 10.1109/TWC.2023.3322776 10.1038/s41598-023-35863-5 10.1109/4235.585893 10.1007/s11227-023-05387-w 10.1016/J.ASOC.2024.111391 10.1007/s10586-024-04787-8 10.1109/TMC.2019.2891736 10.1016/j.advengsoft.2013.12.007 10.1016/J.FUTURE.2019.09.035 10.3390/electronics11142244 10.1007/s11227-024-06603-x 10.1007/S12652-021-03561-7/FIGURES/6 10.3390/INFO11020083 10.1007/S10586-023-04193-6/FIGURES/12 10.1016/J.COMNET.2020.107334 10.1109/TWC.2019.2944165 10.1016/j.iot.2024.101120 10.1186/S13638-021-01984-6/FIGURES/6 10.1109/TVT.2020.2978027 10.1109/ACIT50332.2020.9300093 10.1007/S00500-023-09159-9/TABLES/6 10.1016/J.ASOC.2023.110776 10.3390/s21082628 10.1016/j.advengsoft.2016.01.008 10.1109/TVT.2017.2740724 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-025-07933-0 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| ExternalDocumentID | 10_1007_s11227_025_07933_0 |
| GroupedDBID | -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBS EIOEI ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM MA- N9A NB0 NPVJJ NQJWS O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCJ SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ~EX AAYXX BGNMA CCPQU CITATION M4Y JQ2 |
| ID | FETCH-LOGICAL-c272t-9d0e5fd2ca428e041f076563a3fc1065d2aee7f5cd56f5994f3f68d563ab51bd3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001594665500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-0484 0920-8542 |
| IngestDate | Sat Oct 18 23:25:02 EDT 2025 Sat Nov 29 07:15:55 EST 2025 Wed Oct 15 10:50:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | Internet of robotic things Multi-objective optimization Load balancing Cloud robotics Task offloading Energy optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-9d0e5fd2ca428e041f076563a3fc1065d2aee7f5cd56f5994f3f68d563ab51bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3260908404 |
| PQPubID | 2043774 |
| ParticipantIDs | proquest_journals_3260908404 crossref_primary_10_1007_s11227_025_07933_0 springer_journals_10_1007_s11227_025_07933_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20251014 |
| PublicationDateYYYYMMDD | 2025-10-14 |
| PublicationDate_xml | – month: 10 year: 2025 text: 20251014 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 7933_CR1 Z Li (7933_CR16) 2020; 11 U Saleem (7933_CR17) 2020; 69 W Sun (7933_CR21) 2020; 69 S Mirjalili (7933_CR44) 2016; 95 J Cheng (7933_CR22) 2021; 2021 P Singh (7933_CR26) 2022; 30 M Huang (7933_CR27) 2021; 21 S Kashyap (7933_CR25) 2025; 23 S Singh (7933_CR31) 2024; 154 A Mahapatra (7933_CR32) 2024; 12 A Etefaghi (7933_CR36) 2023; 79 H Xiao (7933_CR30) 2024 G Li (7933_CR40) 2020; 19 7933_CR45 7933_CR42 C Shu (7933_CR41) 2022; 11 A Hazra (7933_CR24) 2023; 10 H Sharma (7933_CR46) 2019; 779 H Gupta (7933_CR9) 2023; 147 M Aazam (7933_CR6) 2018; 87 B Jang (7933_CR50) 2019; 7 7933_CR18 J Yan (7933_CR28) 2020; 19 Y Duan (7933_CR14) 2024; 80 M Han (7933_CR48) 2024; 239 H Gupta (7933_CR10) 2022 B Xie (7933_CR35) 2025; 81 H Cao (7933_CR39) 2018; 67 H Yuan (7933_CR7) 2021; 18 TT Nguyen (7933_CR29) 2020; 19 S Kashyap (7933_CR37) 2025; 28 V Vijayalakshmi (7933_CR49) 2023; 27 7933_CR52 A Sayeed (7933_CR3) 2022; 14 V Dawarka (7933_CR5) 2022; 73 A Shahidinejad (7933_CR12) 2022; 13 S Zhou (7933_CR20) 2020; 178 S Kushwaha (7933_CR55) 2025; 28 S Mirjalili (7933_CR53) 2017; 114 R Chen (7933_CR34) 2024; 23 Y Miao (7933_CR19) 2020; 102 J Zhou (7933_CR54) 2018; 50 Z Wu (7933_CR8) 2020; 69 R Chen (7933_CR33) 2025 DH Wolpert (7933_CR13) 1997; 1 S Mirjalili (7933_CR43) 2014; 69 P Trojovský (7933_CR47) 2023 C Yi (7933_CR38) 2020; 19 K Sreelakshmy (7933_CR51) 2023; 45 Y Han (7933_CR23) 2022; 2022 N El Menbawy (7933_CR2) 2023; 79 M Sandhu (7933_CR4) 2024; 25 M Sheng (7933_CR15) 2020; 19 N Kumari (7933_CR11) 2024; 27 |
| References_xml | – volume: 69 start-page: 12240 year: 2020 ident: 7933_CR21 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.3018817 – volume: 69 start-page: 4417 year: 2020 ident: 7933_CR8 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2975056 – volume: 10 start-page: 3944 year: 2023 ident: 7933_CR24 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3150070 – ident: 7933_CR42 doi: 10.1109/ICNN.1995.488968 – volume: 239 year: 2024 ident: 7933_CR48 publication-title: Expert Syst Appl doi: 10.1016/J.ESWA.2023.122413 – volume: 28 start-page: 1 year: 2025 ident: 7933_CR55 publication-title: Cluster Comput doi: 10.1007/S10586-024-04702-1/FIGURES/16 – volume: 80 start-page: 14752 year: 2024 ident: 7933_CR14 publication-title: J Supercomput doi: 10.1007/S11227-024-06034-8/TABLES/3 – volume: 19 start-page: 235 year: 2020 ident: 7933_CR28 publication-title: IEEE Trans Wirel Commun doi: 10.1109/TWC.2019.2943563 – volume: 18 start-page: 1277 year: 2021 ident: 7933_CR7 publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2020.3000946 – year: 2024 ident: 7933_CR30 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2024.3349538 – ident: 7933_CR45 doi: 10.1109/CEC.1999.782657 – ident: 7933_CR52 doi: 10.1109/CEC.2018.8477769 – volume: 45 start-page: 2483 issue: 3 year: 2023 ident: 7933_CR51 publication-title: Comput Syst Sci Eng doi: 10.32604/csse.2023.032737 – volume: 50 start-page: 949 year: 2018 ident: 7933_CR54 publication-title: Eng Optim doi: 10.1080/0305215X.2017.1361418 – volume: 14 year: 2022 ident: 7933_CR3 publication-title: Future Internet doi: 10.3390/FI14090265 – volume: 73 year: 2022 ident: 7933_CR5 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2021.102240 – year: 2022 ident: 7933_CR10 publication-title: Expert Syst doi: 10.1111/exsy.13224 – volume: 23 start-page: 22 year: 2025 ident: 7933_CR25 publication-title: J Grid Comput doi: 10.1007/s10723-025-09809-2 – volume: 79 start-page: 1592 year: 2023 ident: 7933_CR36 publication-title: J Supercomput doi: 10.1007/s11227-022-04728-5 – volume: 12 start-page: 14334 year: 2024 ident: 7933_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3357122 – volume: 19 start-page: 2813 year: 2020 ident: 7933_CR15 publication-title: IEEE Trans Wirel Commun doi: 10.1109/TWC.2020.2968426 – volume: 19 start-page: 624 year: 2020 ident: 7933_CR40 publication-title: IEEE Trans Wireless Commun doi: 10.1109/TWC.2019.2947046 – volume: 2022 start-page: 5349571 year: 2022 ident: 7933_CR23 publication-title: Wirel Commun Mob Comput doi: 10.1155/2022/5349571 – volume: 87 start-page: 278 year: 2018 ident: 7933_CR6 publication-title: Futur Gener Comput Syst doi: 10.1016/J.FUTURE.2018.04.057 – volume: 30 start-page: 1 year: 2022 ident: 7933_CR26 publication-title: J Netw Syst Manag doi: 10.1007/S10922-021-09622-8/FIGURES/9 – year: 2025 ident: 7933_CR33 publication-title: IEEE Trans Mob Comput doi: 10.1109/TMC.2025.3582755 – volume: 7 start-page: 133653 year: 2019 ident: 7933_CR50 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2941229 – ident: 7933_CR18 doi: 10.1109/WCSP49889.2020.9299850 – volume: 114 start-page: 163 year: 2017 ident: 7933_CR53 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 779 start-page: 43 year: 2019 ident: 7933_CR46 publication-title: Stud Comput Intell doi: 10.1007/978-3-319-91341-4_4 – volume: 23 start-page: 4815 year: 2024 ident: 7933_CR34 publication-title: IEEE Trans Wirel Commun doi: 10.1109/TWC.2023.3322776 – year: 2023 ident: 7933_CR47 publication-title: Sci Reports doi: 10.1038/s41598-023-35863-5 – volume: 1 start-page: 67 year: 1997 ident: 7933_CR13 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 79 start-page: 20076 year: 2023 ident: 7933_CR2 publication-title: J Supercomput doi: 10.1007/s11227-023-05387-w – volume: 154 year: 2024 ident: 7933_CR31 publication-title: Appl Soft Comput doi: 10.1016/J.ASOC.2024.111391 – volume: 28 start-page: 1 year: 2025 ident: 7933_CR37 publication-title: Cluster Comput doi: 10.1007/s10586-024-04787-8 – volume: 19 start-page: 29 year: 2020 ident: 7933_CR38 publication-title: IEEE Trans Mob Comput doi: 10.1109/TMC.2019.2891736 – volume: 69 start-page: 46 year: 2014 ident: 7933_CR43 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 102 start-page: 925 year: 2020 ident: 7933_CR19 publication-title: Futur Gener Comput Syst doi: 10.1016/J.FUTURE.2019.09.035 – volume: 11 start-page: 2244 year: 2022 ident: 7933_CR41 publication-title: Electronics doi: 10.3390/electronics11142244 – volume: 81 start-page: 1 year: 2025 ident: 7933_CR35 publication-title: J Supercomput doi: 10.1007/s11227-024-06603-x – volume: 13 start-page: 2785 year: 2022 ident: 7933_CR12 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/S12652-021-03561-7/FIGURES/6 – volume: 11 issue: 2 year: 2020 ident: 7933_CR16 publication-title: Information doi: 10.3390/INFO11020083 – volume: 27 start-page: 4589 year: 2024 ident: 7933_CR11 publication-title: Cluster Comput doi: 10.1007/S10586-023-04193-6/FIGURES/12 – volume: 178 year: 2020 ident: 7933_CR20 publication-title: Comput Networks doi: 10.1016/J.COMNET.2020.107334 – volume: 19 start-page: 293 year: 2020 ident: 7933_CR29 publication-title: IEEE Trans Wireless Commun doi: 10.1109/TWC.2019.2944165 – volume: 25 year: 2024 ident: 7933_CR4 publication-title: Internet of Things (Netherlands) doi: 10.1016/j.iot.2024.101120 – volume: 2021 start-page: 1 year: 2021 ident: 7933_CR22 publication-title: Eurasip J Wirel Commun Netw doi: 10.1186/S13638-021-01984-6/FIGURES/6 – volume: 69 start-page: 4472 year: 2020 ident: 7933_CR17 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2978027 – ident: 7933_CR1 doi: 10.1109/ACIT50332.2020.9300093 – volume: 27 start-page: 17473 year: 2023 ident: 7933_CR49 publication-title: Soft Comput doi: 10.1007/S00500-023-09159-9/TABLES/6 – volume: 147 year: 2023 ident: 7933_CR9 publication-title: Appl Soft Comput doi: 10.1016/J.ASOC.2023.110776 – volume: 21 start-page: 1 year: 2021 ident: 7933_CR27 publication-title: Sensors doi: 10.3390/s21082628 – volume: 95 start-page: 51 year: 2016 ident: 7933_CR44 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 67 start-page: 752 year: 2018 ident: 7933_CR39 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2017.2740724 |
| SSID | ssj0004373 |
| Score | 2.3885016 |
| Snippet | The Internet of Robotic Things (IoRT) integrates cloud robotics, artificial intelligence, and the Internet of Things to work collaboratively and is popularly... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1464 |
| SubjectTerms | Algorithms Artificial intelligence Compilers Computation offloading Computer Science Cost control Data processing Edge computing Energy consumption Energy efficiency Energy requirements Internet of Things Interpreters Machine learning Multiple objective analysis Neural networks Optimization Performance enhancement Processor Architectures Programming Languages Real time Robot learning Robotics |
| Title | A walrus optimization algorithm for sustainable internet of robotic things based on Q-Learning |
| URI | https://link.springer.com/article/10.1007/s11227-025-07933-0 https://www.proquest.com/docview/3260908404 |
| Volume | 81 |
| WOSCitedRecordID | wos001594665500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYaU8RVFBHtjAkhPHdT1WiIqpAvFQJyK_Uiq1DUpS-PucU0cRCAaY47Ois333XZzvO4QuGPMq-wqiH-RXksR2SDRnlGgtoFpgFiB9UjebEJPJcDqVd4EUVjZ_uzdXknWkbsluURwL4tuvelE3RqBQ3-ZebcbX6A_PLRuSCRboMT_bfU1BLa78dhVaZ5hx93_vtod2A6LEo80W2EdbbnWAuk23BhwO7yF6GeEPtSjWJc4hTCwD_xKrxSwv5tXrEgN8xWXLp8Lz-mOhq3Ce4SLXOcyPq7rNJ_a5z2KwvidBoHV2hJ7GN4_XtyR0VyAmFnFFpKWOZzY2CioQR5MoowLAHVMsM1Anchsr50TGjeWDjEuZZCwbDK0foXmkLTtGnVW-cicIy4FTgnMz0AAmo0hJAyZGJl5vTlMneuiycXj6thHRSFu5ZO-6FFyX1q5LaQ_1mzVJw4EqU0CZVFKoRpMeumrWoH38-2ynfxveR52qWLsztGPeq3lZnNd76xMiWMws |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA4yBX1x_sTp1Dz4poG0aZr1cYhj4hyKU_ZkaZtkDrZV2k7_fS81pSj6oM_NhXCX3H3X5LtD6IwxU2U_Au8H8ZV4ruyQmDNK4lhAtsAkQHqvbDYhhsPOeBzcWVJYXr12r64kS09dk90c1xXEtF81Rd0YgUR91TNtdkyO_vBUsyGZYJYe87Pc1xBU48pvV6FlhOk1_7e2LbRpESXufm6BbbSiFjuoWXVrwPbw7qLnLn6PZtkyxym4ibnlX-JoNkmzafEyxwBfcV7zqfC0_FmoCpxqnKVxCvPjomzziU3skxik74kt0DrZQ4-9q9Fln9juCiRxhVuQQFLFtXSTCDIQRT1HUwHgjkVMJ5AnculGSgnNE8l9zYPA00z7HWlGxNyJJdtHjUW6UAcIB76KBOeJHwOYdJwoSEAkCTxTby6mSrTQeaXw8PWziEZYl0s2qgtBdWGpupC2ULuySWgPVB4CyqQBhWzUa6GLygb1599nO_zb8FO03h_dDsLB9fDmCG24xqTm_YrXRo0iW6pjtJa8FdM8Oyk33Qck2dEe |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRXxxXnE6NQ--aVibNM36ONShKGNe2ZOlbZI52NbRdvr3PelaqqIP4nOTEE4u5zvN-b6D0AljRmU_gNsP_CtxqGyTkDOLhKGAaIFJgPROXmxC9HrtwcDrf2Lx59nu5ZPkgtNgVJqmWWsmdasivtmUCmJKsRqBN0YgaF92IJIxSV33D88VM5IJVlBlfu731R1VGPPbs2jubbr1_89zA60XSBN3FltjEy2p6Raql1UccHGot9FLB78H42Se4hiuj0nBy8TBeBgno-x1ggHW4rTiWeFR_hNRZTjWOInDGMbHWV7-ExufKDH0viOFcOtwBz11Lx_Pr0hRdYFEVNCMeNJSXEsaBRCZKMuxtSUA9LGA6QjiRy5poJTQPJLc1dzzHM2025amRcjtULJdVJvGU7WHsOeqQHAeuSGATNsOvAi6RJ5jdOhCS4kGOi2N788W4hp-JaNsTOeD6fzcdL7VQM1yffzioKU-oE_LsyBKdRrorFyP6vPvo-3_rfkxWu1fdP3b697NAVqjZkVNWovTRLUsmatDtBK9ZaM0Ocr33wfSn9oC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+walrus+optimization+algorithm+for+sustainable+internet+of+robotic+things+based+on+Q-Learning&rft.jtitle=The+Journal+of+supercomputing&rft.au=Varshney%2C+Hirdesh&rft.au=Singh%2C+Avtar&rft.date=2025-10-14&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=81&rft.issue=15&rft.spage=1464&rft_id=info:doi/10.1007%2Fs11227-025-07933-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon |