Modeling and numerical simulations of transport mechanism in microplar fluid using microstructures and nonlinear porous medium theories: An analysis related to energy and sustainability
In this study, the simultaneous transport of heat and mass subjected to fluid–structure interaction in Darcy–Forchheimer porous media is modeled with the help of conservation laws of mass, linear and angular momentum, and energy. The modeled equations are solved numerically using the Galerkin finite...
Saved in:
| Published in: | Journal of thermal analysis and calorimetry Vol. 150; no. 6; pp. 4747 - 4760 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.03.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1388-6150, 1588-2926 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this study, the simultaneous transport of heat and mass subjected to fluid–structure interaction in Darcy–Forchheimer porous media is modeled with the help of conservation laws of mass, linear and angular momentum, and energy. The modeled equations are solved numerically using the Galerkin finite element method. The solutions are checked for their convergence and accuracy. The magnetic field is responsible for the increase in stress on the wall. Therefore, if stress on the surface is needed to decrease, then a magnetic field should not be applied to the flow. However, if stress is required for any engineering process like spray coating, then magnetic fields are a favorable factor. Couple stress associated with nanofluids has the highest magnitude in comparison with. The couple stress tends to increase as a function of vortex viscosity, considered fluids. Couple stress also increases with an increase in the intensity of the magnetic field. Angular velocity gradient in case of
A
l
2
O
3
+
S
i
C
+
M
o
S
2
+
E
G
are the highest relative to
A
l
2
O
3
+
E
G
and
A
l
2
O
3
+
S
i
C
+
E
G
. The presence of the progress media is responsible for an increase in wall shear stress on the surface. Thus, porous media is a favorable agent if the stress on the surface is required to increase, whereas it is unwanted if the stress on the surface is needed to reduce. The Forchheimer porous medium is more effective than the Darcy porous medium in controlling the viscous region. However, Forchheimer porous medium causes an enhancement in shear stress, which is not required in some systems as extra wall shear stress may cause damage to the system. |
|---|---|
| AbstractList | In this study, the simultaneous transport of heat and mass subjected to fluid–structure interaction in Darcy–Forchheimer porous media is modeled with the help of conservation laws of mass, linear and angular momentum, and energy. The modeled equations are solved numerically using the Galerkin finite element method. The solutions are checked for their convergence and accuracy. The magnetic field is responsible for the increase in stress on the wall. Therefore, if stress on the surface is needed to decrease, then a magnetic field should not be applied to the flow. However, if stress is required for any engineering process like spray coating, then magnetic fields are a favorable factor. Couple stress associated with nanofluids has the highest magnitude in comparison with. The couple stress tends to increase as a function of vortex viscosity, considered fluids. Couple stress also increases with an increase in the intensity of the magnetic field. Angular velocity gradient in case of
A
l
2
O
3
+
S
i
C
+
M
o
S
2
+
E
G
are the highest relative to
A
l
2
O
3
+
E
G
and
A
l
2
O
3
+
S
i
C
+
E
G
. The presence of the progress media is responsible for an increase in wall shear stress on the surface. Thus, porous media is a favorable agent if the stress on the surface is required to increase, whereas it is unwanted if the stress on the surface is needed to reduce. The Forchheimer porous medium is more effective than the Darcy porous medium in controlling the viscous region. However, Forchheimer porous medium causes an enhancement in shear stress, which is not required in some systems as extra wall shear stress may cause damage to the system. In this study, the simultaneous transport of heat and mass subjected to fluid–structure interaction in Darcy–Forchheimer porous media is modeled with the help of conservation laws of mass, linear and angular momentum, and energy. The modeled equations are solved numerically using the Galerkin finite element method. The solutions are checked for their convergence and accuracy. The magnetic field is responsible for the increase in stress on the wall. Therefore, if stress on the surface is needed to decrease, then a magnetic field should not be applied to the flow. However, if stress is required for any engineering process like spray coating, then magnetic fields are a favorable factor. Couple stress associated with nanofluids has the highest magnitude in comparison with. The couple stress tends to increase as a function of vortex viscosity, considered fluids. Couple stress also increases with an increase in the intensity of the magnetic field. Angular velocity gradient in case of Al2O3+SiC+MoS2+EG are the highest relative to Al2O3+EG and Al2O3+SiC+EG. The presence of the progress media is responsible for an increase in wall shear stress on the surface. Thus, porous media is a favorable agent if the stress on the surface is required to increase, whereas it is unwanted if the stress on the surface is needed to reduce. The Forchheimer porous medium is more effective than the Darcy porous medium in controlling the viscous region. However, Forchheimer porous medium causes an enhancement in shear stress, which is not required in some systems as extra wall shear stress may cause damage to the system. |
| Author | Nawaz, M. Salmi, Abdelatif |
| Author_xml | – sequence: 1 givenname: Abdelatif surname: Salmi fullname: Salmi, Abdelatif email: a.salmi@psau.edu.sa organization: Prince Sattam Bin Abdulaziz University, College of Engineering, Department of Civil Engineering – sequence: 2 givenname: M. orcidid: 0000-0003-3914-7045 surname: Nawaz fullname: Nawaz, M. organization: Department of Applied Mathematics and Statistics, Institute of Space Technology |
| BookMark | eNp9kc2OFCEURokZE2dGX8AVietSfgpo3E0mOpqMcaNrQhe3ephUQcuFRT-abyfdZeLOFTfkfOdCvhtylXICQt5y9p4zZj4gZ9bIgQk18FFyNtgX5Jqr3W4QVuirPss-a67YK3KD-MwYs5bxa_L7Ww6wxHSgPgWa2golTn6hGNe2-BpzQppnWotPeMyl0hWmJ58irjQmusap5OPiC52XFgNteDZdbrGWNtVWADdzTn0LdLJbcsPuCbGttD5BLhHwI71LHfTLCSPSAn03BFozhQTlcLo4sGH1Mfl9XGI9vSYvZ78gvPl73pKfnz_9uP8yPH5_-Hp_9zhMwog62AnsqPeWBz5yIVXgMujJTMbwfVAwqgBa74Ucg2JemlkbDRJms9Mh7EDM8pa827zHkn81wOqecyv9peikUEpLoQXrlNio89exwOyOJa6-nBxn7lyR2ypyvSJ3qcjZHpJbCDucDlD-qf-T-gMAL5v_ |
| Cites_doi | 10.2298/TSCI21S2165R 10.1016/j.icheatmasstransfer.2022.106311 10.1016/j.csite.2022.102212 10.1016/j.csite.2023.102718 10.1016/j.icheatmasstransfer.2022.106394 10.1007/s40571-022-00497-3 10.1142/S0217979223501564 10.4236/am.2015.62040 10.1016/j.csite.2023.103049 10.1016/j.csite.2022.102195 10.1016/j.icheatmasstransfer.2023.106775 10.1007/s10973-022-11405-5 10.1007/s10973-023-12547-w 10.1007/s10973-023-12097-1 10.1016/j.icheatmasstransfer.2023.106956 10.1080/10407782.2022.2157916 10.1007/s10973-020-10533-0 10.1016/j.csite.2022.102037 10.1007/s10973-022-11224-8 10.1007/s10973-021-10586-9 10.1007/s10973-021-10913-0 10.1016/j.csite.2021.101639 10.1016/j.csite.2021.101647 10.1177/09544089211056236 10.1007/s10973-022-11608-w 10.1007/s10973-023-12105-4 10.1016/j.csite.2022.101909 10.1016/j.csite.2022.101812 10.1016/j.csite.2022.101949 10.1016/j.padiff.2024.100927 10.1007/s13369-021-05981-1 10.1007/s10973-022-11758-x 10.1108/HFF-02-2023-0062 10.1016/j.csite.2022.102233 10.1007/s40571-022-00509-2 10.1080/17455030.2023.2198038 10.1016/j.csite.2022.101988 10.1007/s10973-023-12565-8 10.1007/s12008-023-01379-5 10.1016/j.csite.2023.103560 10.1016/j.csite.2022.102140 10.1080/01430750.2022.2091034 10.1007/s10973-021-10738-x 10.1080/02286203.2022.2051993 10.1016/j.aej.2022.06.058 |
| ContentType | Journal Article |
| Copyright | Akadémiai Kiadó Zrt 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Akadémiai Kiadó Zrt 2025. |
| Copyright_xml | – notice: Akadémiai Kiadó Zrt 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Akadémiai Kiadó Zrt 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10973-025-14310-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Engineering |
| EISSN | 1588-2926 |
| EndPage | 4760 |
| ExternalDocumentID | 10_1007_s10973_025_14310_9 |
| GrantInformation_xml | – fundername: Prince Sattam bin Abdulaziz University grantid: PSAU/2024/01/28367 funderid: http://dx.doi.org/10.13039/100009392 |
| GroupedDBID | -Y2 .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHIR ADHKG ADKNI ADKPE ADMLS ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 ZE2 ZMTXR ~02 ~8M AAYXX ABJCF ABRTQ AFFHD AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ KB. M2P M7S PDBOC PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c272t-9ce946b91d141235d13d6c7c771bd5e45de66b234d50a37f676e3ef786dd8e2f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001512264100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1388-6150 |
| IngestDate | Wed Oct 01 06:57:42 EDT 2025 Sat Nov 29 07:50:43 EST 2025 Sat Jul 05 01:11:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Ohmic dissipation Axisymmetric transport Granular Micropolar theory Microstructures Spin gradient Nanoscales |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-9ce946b91d141235d13d6c7c771bd5e45de66b234d50a37f676e3ef786dd8e2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3914-7045 |
| PQID | 3255632620 |
| PQPubID | 2043843 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3255632620 crossref_primary_10_1007_s10973_025_14310_9 springer_journals_10_1007_s10973_025_14310_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20250300 2025-03-00 20250301 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Dordrecht |
| PublicationSubtitle | An International Forum for Thermal Studies |
| PublicationTitle | Journal of thermal analysis and calorimetry |
| PublicationTitleAbbrev | J Therm Anal Calorim |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | P Nanda (14310_CR20) 2023; 83 M Arshad (14310_CR35) 2022; 36 Adnan (14310_CR29) 2023 S Batool (14310_CR36) 2022; 37 WK Usafzai (14310_CR8) 2023; 144 MM Bhatti (14310_CR22) 2023; 148 P Mishra (14310_CR2) 2022; 36 S Rana (14310_CR40) 2021; 25 G Ojemeri (14310_CR25) 2022; 61 A Aziz (14310_CR14) 2023; 43 AC Eringen (14310_CR1) 1966; 16 M Basit Shafiq (14310_CR11) 2022; 147 R Rehman (14310_CR12) 2022; 31 M Nemati (14310_CR28) 2023; 10 M Idrees (14310_CR19) 2022; 138 B Shilpa (14310_CR30) 2023; 147 M Noorbakhsh (14310_CR9) 2022 Y Li (14310_CR31) 2023; 51 A Nazir (14310_CR7) 2015; 6 HA Madkhali (14310_CR39) 2022; 139 H Ayed (14310_CR32) 2023; 148 A Heydari (14310_CR21) 2023; 148 P Vijayalakshmi (14310_CR16) 2023; 148 W Aich (14310_CR45) 2023; 37 H Waqas (14310_CR17) 2022; 36 MA Kumar (14310_CR33) 2023; 148 S Rafiq (14310_CR43) 2024; 12 V Agarwal (14310_CR6) 2022; 147 M Nawaz (14310_CR42) 2021; 28 H Nabi (14310_CR18) 2022; 33 B Unyong (14310_CR26) 2022; 30 14310_CR15 J Alzahrani (14310_CR3) 2022; 34 M Al Nuwairan (14310_CR23) 2022; 35 P Kanti (14310_CR10) 2022; 147 A Salmi (14310_CR37) 2022; 33 S Rana (14310_CR41) 2023; 33 Z Abbas (14310_CR24) 2023; 42 M Jbeili (14310_CR13) 2023; 10 PS Reddy (14310_CR38) 2022; 147 ZW Tong (14310_CR46) 2022; 47 VK Narla (14310_CR4) 2022; 43 EA Algehyne (14310_CR34) 2023; 148 14310_CR44 N Abbas (14310_CR5) 2022; 147 KT Kumar (14310_CR27) 2023; 47 |
| References_xml | – volume: 25 start-page: 165 issue: 2 year: 2021 ident: 14310_CR40 publication-title: Therm Sci doi: 10.2298/TSCI21S2165R – volume: 138 year: 2022 ident: 14310_CR19 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2022.106311 – volume: 36 year: 2022 ident: 14310_CR17 publication-title: Case Studies Therm Eng doi: 10.1016/j.csite.2022.102212 – volume: 42 year: 2023 ident: 14310_CR24 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2023.102718 – volume: 139 year: 2022 ident: 14310_CR39 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2022.106394 – volume: 10 start-page: 331 issue: 3 year: 2023 ident: 14310_CR28 publication-title: Computational Particle Mechanics doi: 10.1007/s40571-022-00497-3 – volume: 37 start-page: 2350156 issue: 16 year: 2023 ident: 14310_CR45 publication-title: Int J Mod Phys B doi: 10.1142/S0217979223501564 – volume: 6 start-page: 430 year: 2015 ident: 14310_CR7 publication-title: Appl Math doi: 10.4236/am.2015.62040 – volume: 47 year: 2023 ident: 14310_CR27 publication-title: Case Stud Therm Eng. doi: 10.1016/j.csite.2023.103049 – volume: 36 year: 2022 ident: 14310_CR2 publication-title: Case Studies Thermal Eng doi: 10.1016/j.csite.2022.102195 – volume: 144 year: 2023 ident: 14310_CR8 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2023.106775 – volume: 16 start-page: 1 issue: 1 year: 1966 ident: 14310_CR1 publication-title: J Math Mech. – volume: 147 start-page: 12111 issue: 21 year: 2022 ident: 14310_CR11 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-022-11405-5 – volume: 148 start-page: 12699 issue: 22 year: 2023 ident: 14310_CR32 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-023-12547-w – volume: 148 start-page: 6301 issue: 13 year: 2023 ident: 14310_CR33 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-023-12097-1 – volume: 147 year: 2023 ident: 14310_CR30 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2023.106956 – volume: 83 start-page: 711 issue: 7 year: 2023 ident: 14310_CR20 publication-title: Num Heat Transfer, Part A: Appl doi: 10.1080/10407782.2022.2157916 – volume: 147 start-page: 2101 issue: 3 year: 2022 ident: 14310_CR10 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-020-10533-0 – volume: 34 year: 2022 ident: 14310_CR3 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2022.102037 – volume: 147 start-page: 9829 issue: 17 year: 2022 ident: 14310_CR6 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-022-11224-8 – volume: 147 start-page: 3453 issue: 4 year: 2022 ident: 14310_CR38 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-021-10586-9 – volume: 147 start-page: 6449 issue: 11 year: 2022 ident: 14310_CR5 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-021-10913-0 – volume: 30 year: 2022 ident: 14310_CR26 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2021.101639 – volume: 28 year: 2021 ident: 14310_CR42 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2021.101647 – ident: 14310_CR44 doi: 10.1177/09544089211056236 – volume: 148 start-page: 8025 issue: 16 year: 2023 ident: 14310_CR21 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-022-11608-w – volume: 148 start-page: 5897 issue: 13 year: 2023 ident: 14310_CR34 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-023-12105-4 – volume: 33 year: 2022 ident: 14310_CR18 publication-title: Case Studies in Therm Eng doi: 10.1016/j.csite.2022.101909 – volume: 31 year: 2022 ident: 14310_CR12 publication-title: Case Studies Therm Eng doi: 10.1016/j.csite.2022.101812 – volume: 33 year: 2022 ident: 14310_CR37 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2022.101949 – volume: 12 start-page: 100927 year: 2024 ident: 14310_CR43 publication-title: Partial Differ Equ Appl Math. doi: 10.1016/j.padiff.2024.100927 – volume: 47 start-page: 1019 year: 2022 ident: 14310_CR46 publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-05981-1 – volume: 148 start-page: 473 issue: 2 year: 2023 ident: 14310_CR16 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-022-11758-x – volume: 33 start-page: 4037 issue: 12 year: 2023 ident: 14310_CR41 publication-title: Int J Numerical Methods for Heat Fluid Flow. doi: 10.1108/HFF-02-2023-0062 – volume: 37 year: 2022 ident: 14310_CR36 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2022.102233 – volume: 10 start-page: 465 issue: 3 year: 2023 ident: 14310_CR13 publication-title: Comput Part Mechanics doi: 10.1007/s40571-022-00509-2 – year: 2023 ident: 14310_CR29 publication-title: Waves Random Complex Media doi: 10.1080/17455030.2023.2198038 – volume: 35 year: 2022 ident: 14310_CR23 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2022.101988 – volume: 148 start-page: 14261 issue: 24 year: 2023 ident: 14310_CR22 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-023-12565-8 – ident: 14310_CR15 doi: 10.1007/s12008-023-01379-5 – volume: 51 year: 2023 ident: 14310_CR31 publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2023.103560 – volume: 36 start-page: 102140 year: 2022 ident: 14310_CR35 publication-title: Case Stud Therm Eng. doi: 10.1016/j.csite.2022.102140 – volume: 43 start-page: 8193 issue: 1 year: 2022 ident: 14310_CR4 publication-title: Int J Ambient Energy doi: 10.1080/01430750.2022.2091034 – year: 2022 ident: 14310_CR9 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-021-10738-x – volume: 43 start-page: 101 issue: 3 year: 2023 ident: 14310_CR14 publication-title: Int J Model Simul doi: 10.1080/02286203.2022.2051993 – volume: 61 start-page: 12797 issue: 12 year: 2022 ident: 14310_CR25 publication-title: Alex Eng J doi: 10.1016/j.aej.2022.06.058 |
| SSID | ssj0009901 |
| Score | 2.413908 |
| Snippet | In this study, the simultaneous transport of heat and mass subjected to fluid–structure interaction in Darcy–Forchheimer porous media is modeled with the help... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 4747 |
| SubjectTerms | Aluminum Aluminum oxide Analytical Chemistry Angular momentum Angular velocity Chemistry Chemistry and Materials Science Conservation laws Engineering Finite element method Fluid-structure interaction Fluids Heat conductivity Heat exchangers Heat transfer Inorganic Chemistry Investigations Magnetic fields Measurement Science and Instrumentation Nanofluids Nanoparticles Physical Chemistry Polymer Sciences Porous media Rheology Velocity gradient Wall shear stresses |
| Title | Modeling and numerical simulations of transport mechanism in microplar fluid using microstructures and nonlinear porous medium theories: An analysis related to energy and sustainability |
| URI | https://link.springer.com/article/10.1007/s10973-025-14310-9 https://www.proquest.com/docview/3255632620 |
| Volume | 150 |
| WOSCitedRecordID | wos001512264100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1588-2926 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009901 issn: 1388-6150 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELWAIsGFFgrq8lHNoTeItIkTO-4NIVBPCBWouEVxxq4ikeyKbCr1p_HvOrYTLUVwgGtsjSy9icejmfeGsW-lFpjFVkeUKsgoxSSP6EsambzkMaIuRYV-2IS8vMzv7tTVQArrxm73sSTpb-onZDclXc0xiyjG0-2hVtkHCne5G9jw8_rXUmpXTUOaRT7g5M4HqszLNv4PR8s35rOyqI82Fx_fd85PbGt4XcJpcIdttmLaHbZxNg51-8we3ewzx0CHskVo-1CvuYeuboY5Xh3MLCxGyXNojKMG110DdQuN696bUy4M9r6vEVzT_O_wNejQ9pS8B8tBgYN2kpVZ34Gr4fcNeN4kJeff4bSljUEQBTyhxiAsZmA8F9Hb6EZul2vf_bvLbi_Ob85-RMP0hqhKZLKIVGVUKrSKMU4dIRdjjqKSlZSxxsykGRohdMJTzKYll1ZIYbixMheIuUks32NrdFjzhYEVeaWrUlhaS40VpZwm1nBFdo3WCU7Y8QhiMQ8iHcVSjtnBURAchYejUBN2OOJcDD9sV3AnxcadOv-EnYy4Lpdft7b_tu0HbDNxruG72A7ZGoFjjth69WdRdw9fvSP_A00h9Cc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BQSoXvhELBebADSJt4sSOuVUVVRFlhaCg3qI4Y1eRmmxFNpX60_h3jO1ECwgOcI2tkaU38Xg0894AvKyNpCJ1JuFUQSU5ZWXCX_LElrVIiUwtGwrDJtRqVZ6e6o8TKWyYu93nkmS4qX8iu2nla45FwjGebw99HW7kHLG8Yv6nz1-3Urt6GdMs9gEvdz5RZf5s49dwtH1j_lYWDdHm8M7_nfMu3J5el7gf3eEeXLP9fdg9mIe6PYDvfvaZZ6Bj3RP2Y6zXnOPQdtMcrwHXDjez5Dl21lOD26HDtsfOd-9dcC6M7nxsCX3T_Fn8GnVoR07eo-WowME72cp6HNDX8McOA2-Sk_M3uN_zxiiIgoFQYwk3a7SBixhsDDO3y7fvXj2EL4dvTw6Okml6Q9JkKtskurE6l0anlOaekEupINmoRqnUUGHzgqyUJhM5FctaKCeVtMI6VUqi0mZOPIIdPqx9DOhk2Zimlo7XcutkrZaZs0KzXWtMRgt4NYNYXUSRjmorx-zhqBiOKsBR6QXszThX0w87VMJLsQmvzr-A1zOu2-W_W3vyb9tfwO7RyYfj6vjd6v1TuJV5NwkdbXuww0DZZ3Czudy0w7fnwal_AMa99ws |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFgGXlqe6tIU5cIOomzixY25VYVUEWlXiod6iOGNXkZrsiiSV-Gn8O_xItAXBAfVqWyNL3yTj0cz3DcCrUnHKYqMimyqIKKUkj-xKGum8ZDGRKnlFftiEWC7ziwt5foPF77vdp5Jk4DQ4laa2P16TOb5BfJPC1R-zyMZ7-yeRd2AndY30Ll___G0juyvnIeWy_uCkz0fazN9t_B6aNu_NP0qkPvIs9m5_54ewO7468SS4ySPY0u1juH86DXt7Aj_dTDTHTMeyJWyHUMe5wq5uxvleHa4M9pMUOjbaUYbrrsG6xcZ19a1tjozmaqgJXTP9ZVgN-rSDTeqD5aDMYU9aK6uhQ1fbHxr0fEqbtL_Fk9YeDEIp6Ik2mrBfofYcRW-jmzhfrq33x1P4unj_5fQsGqc6RFUikj6SlZYpVzKmOHVEXYoZ8UpUQsSKMp1mpDlXCUspm5dMGC64ZtqInBPlOjHsGWzby-p9QMPzSlUlN3Yv1YaXYp4YzaS1q5VKaAavJ0CLdRDvKDYyzQ6OwsJReDgKOYPDCfNi_JC7gjmJNuZU-2fwZsJ4s_1va8__7_hLuHf-blF8-rD8eAAPEuclvtHtELYtTvoI7lbXfd19f-H9-xfVNP_v |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+numerical+simulations+of+transport+mechanism+in+microplar+fluid+using+microstructures+and+nonlinear+porous+medium+theories%3A+An+analysis+related+to+energy+and+sustainability&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Salmi%2C+Abdelatif&rft.au=Nawaz%2C+M&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=150&rft.issue=6&rft.spage=4747&rft.epage=4760&rft_id=info:doi/10.1007%2Fs10973-025-14310-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |