Modeling and numerical simulations of transport mechanism in microplar fluid using microstructures and nonlinear porous medium theories: An analysis related to energy and sustainability

In this study, the simultaneous transport of heat and mass subjected to fluid–structure interaction in Darcy–Forchheimer porous media is modeled with the help of conservation laws of mass, linear and angular momentum, and energy. The modeled equations are solved numerically using the Galerkin finite...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry Vol. 150; no. 6; pp. 4747 - 4760
Main Authors: Salmi, Abdelatif, Nawaz, M.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.03.2025
Springer Nature B.V
Subjects:
ISSN:1388-6150, 1588-2926
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, the simultaneous transport of heat and mass subjected to fluid–structure interaction in Darcy–Forchheimer porous media is modeled with the help of conservation laws of mass, linear and angular momentum, and energy. The modeled equations are solved numerically using the Galerkin finite element method. The solutions are checked for their convergence and accuracy. The magnetic field is responsible for the increase in stress on the wall. Therefore, if stress on the surface is needed to decrease, then a magnetic field should not be applied to the flow. However, if stress is required for any engineering process like spray coating, then magnetic fields are a favorable factor. Couple stress associated with nanofluids has the highest magnitude in comparison with. The couple stress tends to increase as a function of vortex viscosity, considered fluids. Couple stress also increases with an increase in the intensity of the magnetic field. Angular velocity gradient in case of A l 2 O 3 + S i C + M o S 2 + E G are the highest relative to A l 2 O 3 + E G and A l 2 O 3 + S i C + E G . The presence of the progress media is responsible for an increase in wall shear stress on the surface. Thus, porous media is a favorable agent if the stress on the surface is required to increase, whereas it is unwanted if the stress on the surface is needed to reduce. The Forchheimer porous medium is more effective than the Darcy porous medium in controlling the viscous region. However, Forchheimer porous medium causes an enhancement in shear stress, which is not required in some systems as extra wall shear stress may cause damage to the system.
AbstractList In this study, the simultaneous transport of heat and mass subjected to fluid–structure interaction in Darcy–Forchheimer porous media is modeled with the help of conservation laws of mass, linear and angular momentum, and energy. The modeled equations are solved numerically using the Galerkin finite element method. The solutions are checked for their convergence and accuracy. The magnetic field is responsible for the increase in stress on the wall. Therefore, if stress on the surface is needed to decrease, then a magnetic field should not be applied to the flow. However, if stress is required for any engineering process like spray coating, then magnetic fields are a favorable factor. Couple stress associated with nanofluids has the highest magnitude in comparison with. The couple stress tends to increase as a function of vortex viscosity, considered fluids. Couple stress also increases with an increase in the intensity of the magnetic field. Angular velocity gradient in case of A l 2 O 3 + S i C + M o S 2 + E G are the highest relative to A l 2 O 3 + E G and A l 2 O 3 + S i C + E G . The presence of the progress media is responsible for an increase in wall shear stress on the surface. Thus, porous media is a favorable agent if the stress on the surface is required to increase, whereas it is unwanted if the stress on the surface is needed to reduce. The Forchheimer porous medium is more effective than the Darcy porous medium in controlling the viscous region. However, Forchheimer porous medium causes an enhancement in shear stress, which is not required in some systems as extra wall shear stress may cause damage to the system.
In this study, the simultaneous transport of heat and mass subjected to fluid–structure interaction in Darcy–Forchheimer porous media is modeled with the help of conservation laws of mass, linear and angular momentum, and energy. The modeled equations are solved numerically using the Galerkin finite element method. The solutions are checked for their convergence and accuracy. The magnetic field is responsible for the increase in stress on the wall. Therefore, if stress on the surface is needed to decrease, then a magnetic field should not be applied to the flow. However, if stress is required for any engineering process like spray coating, then magnetic fields are a favorable factor. Couple stress associated with nanofluids has the highest magnitude in comparison with. The couple stress tends to increase as a function of vortex viscosity, considered fluids. Couple stress also increases with an increase in the intensity of the magnetic field. Angular velocity gradient in case of Al2O3+SiC+MoS2+EG are the highest relative to Al2O3+EG and Al2O3+SiC+EG. The presence of the progress media is responsible for an increase in wall shear stress on the surface. Thus, porous media is a favorable agent if the stress on the surface is required to increase, whereas it is unwanted if the stress on the surface is needed to reduce. The Forchheimer porous medium is more effective than the Darcy porous medium in controlling the viscous region. However, Forchheimer porous medium causes an enhancement in shear stress, which is not required in some systems as extra wall shear stress may cause damage to the system.
Author Nawaz, M.
Salmi, Abdelatif
Author_xml – sequence: 1
  givenname: Abdelatif
  surname: Salmi
  fullname: Salmi, Abdelatif
  email: a.salmi@psau.edu.sa
  organization: Prince Sattam Bin Abdulaziz University, College of Engineering, Department of Civil Engineering
– sequence: 2
  givenname: M.
  orcidid: 0000-0003-3914-7045
  surname: Nawaz
  fullname: Nawaz, M.
  organization: Department of Applied Mathematics and Statistics, Institute of Space Technology
BookMark eNp9kc2OFCEURokZE2dGX8AVietSfgpo3E0mOpqMcaNrQhe3ephUQcuFRT-abyfdZeLOFTfkfOdCvhtylXICQt5y9p4zZj4gZ9bIgQk18FFyNtgX5Jqr3W4QVuirPss-a67YK3KD-MwYs5bxa_L7Ww6wxHSgPgWa2golTn6hGNe2-BpzQppnWotPeMyl0hWmJ58irjQmusap5OPiC52XFgNteDZdbrGWNtVWADdzTn0LdLJbcsPuCbGttD5BLhHwI71LHfTLCSPSAn03BFozhQTlcLo4sGH1Mfl9XGI9vSYvZ78gvPl73pKfnz_9uP8yPH5_-Hp_9zhMwog62AnsqPeWBz5yIVXgMujJTMbwfVAwqgBa74Ucg2JemlkbDRJms9Mh7EDM8pa827zHkn81wOqecyv9peikUEpLoQXrlNio89exwOyOJa6-nBxn7lyR2ypyvSJ3qcjZHpJbCDucDlD-qf-T-gMAL5v_
Cites_doi 10.2298/TSCI21S2165R
10.1016/j.icheatmasstransfer.2022.106311
10.1016/j.csite.2022.102212
10.1016/j.csite.2023.102718
10.1016/j.icheatmasstransfer.2022.106394
10.1007/s40571-022-00497-3
10.1142/S0217979223501564
10.4236/am.2015.62040
10.1016/j.csite.2023.103049
10.1016/j.csite.2022.102195
10.1016/j.icheatmasstransfer.2023.106775
10.1007/s10973-022-11405-5
10.1007/s10973-023-12547-w
10.1007/s10973-023-12097-1
10.1016/j.icheatmasstransfer.2023.106956
10.1080/10407782.2022.2157916
10.1007/s10973-020-10533-0
10.1016/j.csite.2022.102037
10.1007/s10973-022-11224-8
10.1007/s10973-021-10586-9
10.1007/s10973-021-10913-0
10.1016/j.csite.2021.101639
10.1016/j.csite.2021.101647
10.1177/09544089211056236
10.1007/s10973-022-11608-w
10.1007/s10973-023-12105-4
10.1016/j.csite.2022.101909
10.1016/j.csite.2022.101812
10.1016/j.csite.2022.101949
10.1016/j.padiff.2024.100927
10.1007/s13369-021-05981-1
10.1007/s10973-022-11758-x
10.1108/HFF-02-2023-0062
10.1016/j.csite.2022.102233
10.1007/s40571-022-00509-2
10.1080/17455030.2023.2198038
10.1016/j.csite.2022.101988
10.1007/s10973-023-12565-8
10.1007/s12008-023-01379-5
10.1016/j.csite.2023.103560
10.1016/j.csite.2022.102140
10.1080/01430750.2022.2091034
10.1007/s10973-021-10738-x
10.1080/02286203.2022.2051993
10.1016/j.aej.2022.06.058
ContentType Journal Article
Copyright Akadémiai Kiadó Zrt 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Akadémiai Kiadó Zrt 2025.
Copyright_xml – notice: Akadémiai Kiadó Zrt 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Akadémiai Kiadó Zrt 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10973-025-14310-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Engineering
EISSN 1588-2926
EndPage 4760
ExternalDocumentID 10_1007_s10973_025_14310_9
GrantInformation_xml – fundername: Prince Sattam bin Abdulaziz University
  grantid: PSAU/2024/01/28367
  funderid: http://dx.doi.org/10.13039/100009392
GroupedDBID -Y2
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WJK
WK8
YLTOR
Z45
ZE2
ZMTXR
~02
~8M
AAYXX
ABJCF
ABRTQ
AFFHD
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
KB.
M2P
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c272t-9ce946b91d141235d13d6c7c771bd5e45de66b234d50a37f676e3ef786dd8e2f3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001512264100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1388-6150
IngestDate Wed Oct 01 06:57:42 EDT 2025
Sat Nov 29 07:50:43 EST 2025
Sat Jul 05 01:11:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Ohmic dissipation
Axisymmetric transport
Granular
Micropolar theory
Microstructures
Spin gradient
Nanoscales
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-9ce946b91d141235d13d6c7c771bd5e45de66b234d50a37f676e3ef786dd8e2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3914-7045
PQID 3255632620
PQPubID 2043843
PageCount 14
ParticipantIDs proquest_journals_3255632620
crossref_primary_10_1007_s10973_025_14310_9
springer_journals_10_1007_s10973_025_14310_9
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Forum for Thermal Studies
PublicationTitle Journal of thermal analysis and calorimetry
PublicationTitleAbbrev J Therm Anal Calorim
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References P Nanda (14310_CR20) 2023; 83
M Arshad (14310_CR35) 2022; 36
Adnan (14310_CR29) 2023
S Batool (14310_CR36) 2022; 37
WK Usafzai (14310_CR8) 2023; 144
MM Bhatti (14310_CR22) 2023; 148
P Mishra (14310_CR2) 2022; 36
S Rana (14310_CR40) 2021; 25
G Ojemeri (14310_CR25) 2022; 61
A Aziz (14310_CR14) 2023; 43
AC Eringen (14310_CR1) 1966; 16
M Basit Shafiq (14310_CR11) 2022; 147
R Rehman (14310_CR12) 2022; 31
M Nemati (14310_CR28) 2023; 10
M Idrees (14310_CR19) 2022; 138
B Shilpa (14310_CR30) 2023; 147
M Noorbakhsh (14310_CR9) 2022
Y Li (14310_CR31) 2023; 51
A Nazir (14310_CR7) 2015; 6
HA Madkhali (14310_CR39) 2022; 139
H Ayed (14310_CR32) 2023; 148
A Heydari (14310_CR21) 2023; 148
P Vijayalakshmi (14310_CR16) 2023; 148
W Aich (14310_CR45) 2023; 37
H Waqas (14310_CR17) 2022; 36
MA Kumar (14310_CR33) 2023; 148
S Rafiq (14310_CR43) 2024; 12
V Agarwal (14310_CR6) 2022; 147
M Nawaz (14310_CR42) 2021; 28
H Nabi (14310_CR18) 2022; 33
B Unyong (14310_CR26) 2022; 30
14310_CR15
J Alzahrani (14310_CR3) 2022; 34
M Al Nuwairan (14310_CR23) 2022; 35
P Kanti (14310_CR10) 2022; 147
A Salmi (14310_CR37) 2022; 33
S Rana (14310_CR41) 2023; 33
Z Abbas (14310_CR24) 2023; 42
M Jbeili (14310_CR13) 2023; 10
PS Reddy (14310_CR38) 2022; 147
ZW Tong (14310_CR46) 2022; 47
VK Narla (14310_CR4) 2022; 43
EA Algehyne (14310_CR34) 2023; 148
14310_CR44
N Abbas (14310_CR5) 2022; 147
KT Kumar (14310_CR27) 2023; 47
References_xml – volume: 25
  start-page: 165
  issue: 2
  year: 2021
  ident: 14310_CR40
  publication-title: Therm Sci
  doi: 10.2298/TSCI21S2165R
– volume: 138
  year: 2022
  ident: 14310_CR19
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2022.106311
– volume: 36
  year: 2022
  ident: 14310_CR17
  publication-title: Case Studies Therm Eng
  doi: 10.1016/j.csite.2022.102212
– volume: 42
  year: 2023
  ident: 14310_CR24
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2023.102718
– volume: 139
  year: 2022
  ident: 14310_CR39
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2022.106394
– volume: 10
  start-page: 331
  issue: 3
  year: 2023
  ident: 14310_CR28
  publication-title: Computational Particle Mechanics
  doi: 10.1007/s40571-022-00497-3
– volume: 37
  start-page: 2350156
  issue: 16
  year: 2023
  ident: 14310_CR45
  publication-title: Int J Mod Phys B
  doi: 10.1142/S0217979223501564
– volume: 6
  start-page: 430
  year: 2015
  ident: 14310_CR7
  publication-title: Appl Math
  doi: 10.4236/am.2015.62040
– volume: 47
  year: 2023
  ident: 14310_CR27
  publication-title: Case Stud Therm Eng.
  doi: 10.1016/j.csite.2023.103049
– volume: 36
  year: 2022
  ident: 14310_CR2
  publication-title: Case Studies Thermal Eng
  doi: 10.1016/j.csite.2022.102195
– volume: 144
  year: 2023
  ident: 14310_CR8
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2023.106775
– volume: 16
  start-page: 1
  issue: 1
  year: 1966
  ident: 14310_CR1
  publication-title: J Math Mech.
– volume: 147
  start-page: 12111
  issue: 21
  year: 2022
  ident: 14310_CR11
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-022-11405-5
– volume: 148
  start-page: 12699
  issue: 22
  year: 2023
  ident: 14310_CR32
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-023-12547-w
– volume: 148
  start-page: 6301
  issue: 13
  year: 2023
  ident: 14310_CR33
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-023-12097-1
– volume: 147
  year: 2023
  ident: 14310_CR30
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2023.106956
– volume: 83
  start-page: 711
  issue: 7
  year: 2023
  ident: 14310_CR20
  publication-title: Num Heat Transfer, Part A: Appl
  doi: 10.1080/10407782.2022.2157916
– volume: 147
  start-page: 2101
  issue: 3
  year: 2022
  ident: 14310_CR10
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-020-10533-0
– volume: 34
  year: 2022
  ident: 14310_CR3
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.102037
– volume: 147
  start-page: 9829
  issue: 17
  year: 2022
  ident: 14310_CR6
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-022-11224-8
– volume: 147
  start-page: 3453
  issue: 4
  year: 2022
  ident: 14310_CR38
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-021-10586-9
– volume: 147
  start-page: 6449
  issue: 11
  year: 2022
  ident: 14310_CR5
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-021-10913-0
– volume: 30
  year: 2022
  ident: 14310_CR26
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.101639
– volume: 28
  year: 2021
  ident: 14310_CR42
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.101647
– ident: 14310_CR44
  doi: 10.1177/09544089211056236
– volume: 148
  start-page: 8025
  issue: 16
  year: 2023
  ident: 14310_CR21
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-022-11608-w
– volume: 148
  start-page: 5897
  issue: 13
  year: 2023
  ident: 14310_CR34
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-023-12105-4
– volume: 33
  year: 2022
  ident: 14310_CR18
  publication-title: Case Studies in Therm Eng
  doi: 10.1016/j.csite.2022.101909
– volume: 31
  year: 2022
  ident: 14310_CR12
  publication-title: Case Studies Therm Eng
  doi: 10.1016/j.csite.2022.101812
– volume: 33
  year: 2022
  ident: 14310_CR37
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.101949
– volume: 12
  start-page: 100927
  year: 2024
  ident: 14310_CR43
  publication-title: Partial Differ Equ Appl Math.
  doi: 10.1016/j.padiff.2024.100927
– volume: 47
  start-page: 1019
  year: 2022
  ident: 14310_CR46
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-021-05981-1
– volume: 148
  start-page: 473
  issue: 2
  year: 2023
  ident: 14310_CR16
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-022-11758-x
– volume: 33
  start-page: 4037
  issue: 12
  year: 2023
  ident: 14310_CR41
  publication-title: Int J Numerical Methods for Heat Fluid Flow.
  doi: 10.1108/HFF-02-2023-0062
– volume: 37
  year: 2022
  ident: 14310_CR36
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.102233
– volume: 10
  start-page: 465
  issue: 3
  year: 2023
  ident: 14310_CR13
  publication-title: Comput Part Mechanics
  doi: 10.1007/s40571-022-00509-2
– year: 2023
  ident: 14310_CR29
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2023.2198038
– volume: 35
  year: 2022
  ident: 14310_CR23
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.101988
– volume: 148
  start-page: 14261
  issue: 24
  year: 2023
  ident: 14310_CR22
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-023-12565-8
– ident: 14310_CR15
  doi: 10.1007/s12008-023-01379-5
– volume: 51
  year: 2023
  ident: 14310_CR31
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2023.103560
– volume: 36
  start-page: 102140
  year: 2022
  ident: 14310_CR35
  publication-title: Case Stud Therm Eng.
  doi: 10.1016/j.csite.2022.102140
– volume: 43
  start-page: 8193
  issue: 1
  year: 2022
  ident: 14310_CR4
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2022.2091034
– year: 2022
  ident: 14310_CR9
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-021-10738-x
– volume: 43
  start-page: 101
  issue: 3
  year: 2023
  ident: 14310_CR14
  publication-title: Int J Model Simul
  doi: 10.1080/02286203.2022.2051993
– volume: 61
  start-page: 12797
  issue: 12
  year: 2022
  ident: 14310_CR25
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2022.06.058
SSID ssj0009901
Score 2.413908
Snippet In this study, the simultaneous transport of heat and mass subjected to fluid–structure interaction in Darcy–Forchheimer porous media is modeled with the help...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 4747
SubjectTerms Aluminum
Aluminum oxide
Analytical Chemistry
Angular momentum
Angular velocity
Chemistry
Chemistry and Materials Science
Conservation laws
Engineering
Finite element method
Fluid-structure interaction
Fluids
Heat conductivity
Heat exchangers
Heat transfer
Inorganic Chemistry
Investigations
Magnetic fields
Measurement Science and Instrumentation
Nanofluids
Nanoparticles
Physical Chemistry
Polymer Sciences
Porous media
Rheology
Velocity gradient
Wall shear stresses
Title Modeling and numerical simulations of transport mechanism in microplar fluid using microstructures and nonlinear porous medium theories: An analysis related to energy and sustainability
URI https://link.springer.com/article/10.1007/s10973-025-14310-9
https://www.proquest.com/docview/3255632620
Volume 150
WOSCitedRecordID wos001512264100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1588-2926
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009901
  issn: 1388-6150
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELWAIsGFFgrq8lHNoTeItIkTO-4NIVBPCBWouEVxxq4ikeyKbCr1p_HvOrYTLUVwgGtsjSy9icejmfeGsW-lFpjFVkeUKsgoxSSP6EsambzkMaIuRYV-2IS8vMzv7tTVQArrxm73sSTpb-onZDclXc0xiyjG0-2hVtkHCne5G9jw8_rXUmpXTUOaRT7g5M4HqszLNv4PR8s35rOyqI82Fx_fd85PbGt4XcJpcIdttmLaHbZxNg51-8we3ewzx0CHskVo-1CvuYeuboY5Xh3MLCxGyXNojKMG110DdQuN696bUy4M9r6vEVzT_O_wNejQ9pS8B8tBgYN2kpVZ34Gr4fcNeN4kJeff4bSljUEQBTyhxiAsZmA8F9Hb6EZul2vf_bvLbi_Ob85-RMP0hqhKZLKIVGVUKrSKMU4dIRdjjqKSlZSxxsykGRohdMJTzKYll1ZIYbixMheIuUks32NrdFjzhYEVeaWrUlhaS40VpZwm1nBFdo3WCU7Y8QhiMQ8iHcVSjtnBURAchYejUBN2OOJcDD9sV3AnxcadOv-EnYy4Lpdft7b_tu0HbDNxruG72A7ZGoFjjth69WdRdw9fvSP_A00h9Cc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BQSoXvhELBebADSJt4sSOuVUVVRFlhaCg3qI4Y1eRmmxFNpX60_h3jO1ECwgOcI2tkaU38Xg0894AvKyNpCJ1JuFUQSU5ZWXCX_LElrVIiUwtGwrDJtRqVZ6e6o8TKWyYu93nkmS4qX8iu2nla45FwjGebw99HW7kHLG8Yv6nz1-3Urt6GdMs9gEvdz5RZf5s49dwtH1j_lYWDdHm8M7_nfMu3J5el7gf3eEeXLP9fdg9mIe6PYDvfvaZZ6Bj3RP2Y6zXnOPQdtMcrwHXDjez5Dl21lOD26HDtsfOd-9dcC6M7nxsCX3T_Fn8GnVoR07eo-WowME72cp6HNDX8McOA2-Sk_M3uN_zxiiIgoFQYwk3a7SBixhsDDO3y7fvXj2EL4dvTw6Okml6Q9JkKtskurE6l0anlOaekEupINmoRqnUUGHzgqyUJhM5FctaKCeVtMI6VUqi0mZOPIIdPqx9DOhk2Zimlo7XcutkrZaZs0KzXWtMRgt4NYNYXUSRjmorx-zhqBiOKsBR6QXszThX0w87VMJLsQmvzr-A1zOu2-W_W3vyb9tfwO7RyYfj6vjd6v1TuJV5NwkdbXuww0DZZ3Czudy0w7fnwal_AMa99ws
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFgGXlqe6tIU5cIOomzixY25VYVUEWlXiod6iOGNXkZrsiiSV-Gn8O_xItAXBAfVqWyNL3yTj0cz3DcCrUnHKYqMimyqIKKUkj-xKGum8ZDGRKnlFftiEWC7ziwt5foPF77vdp5Jk4DQ4laa2P16TOb5BfJPC1R-zyMZ7-yeRd2AndY30Ll___G0juyvnIeWy_uCkz0fazN9t_B6aNu_NP0qkPvIs9m5_54ewO7468SS4ySPY0u1juH86DXt7Aj_dTDTHTMeyJWyHUMe5wq5uxvleHa4M9pMUOjbaUYbrrsG6xcZ19a1tjozmaqgJXTP9ZVgN-rSDTeqD5aDMYU9aK6uhQ1fbHxr0fEqbtL_Fk9YeDEIp6Ik2mrBfofYcRW-jmzhfrq33x1P4unj_5fQsGqc6RFUikj6SlZYpVzKmOHVEXYoZ8UpUQsSKMp1mpDlXCUspm5dMGC64ZtqInBPlOjHsGWzby-p9QMPzSlUlN3Yv1YaXYp4YzaS1q5VKaAavJ0CLdRDvKDYyzQ6OwsJReDgKOYPDCfNi_JC7gjmJNuZU-2fwZsJ4s_1va8__7_hLuHf-blF8-rD8eAAPEuclvtHtELYtTvoI7lbXfd19f-H9-xfVNP_v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+numerical+simulations+of+transport+mechanism+in+microplar+fluid+using+microstructures+and+nonlinear+porous+medium+theories%3A+An+analysis+related+to+energy+and+sustainability&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Salmi%2C+Abdelatif&rft.au=Nawaz%2C+M&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=150&rft.issue=6&rft.spage=4747&rft.epage=4760&rft_id=info:doi/10.1007%2Fs10973-025-14310-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon