Feature splitting parallel algorithm for Dantzig selectors
The Dantzig selector is a widely used and effective method for variable selection in ultra-high-dimensional data. Feature splitting is an efficient processing technique that involves dividing these ultra-high-dimensional variable datasets into manageable subsets that can be stored and processed more...
Uloženo v:
| Vydáno v: | Statistics and computing Ročník 35; číslo 5 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0960-3174, 1573-1375 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Dantzig selector is a widely used and effective method for variable selection in ultra-high-dimensional data. Feature splitting is an efficient processing technique that involves dividing these ultra-high-dimensional variable datasets into manageable subsets that can be stored and processed more easily on a single machine. This paper proposes a variable splitting parallel algorithm for solving both convex and nonconvex Dantzig selectors based on the proximal point algorithm. The primary advantage of our parallel algorithm, compared to existing parallel approaches, is the significantly reduced number of iteration variables, which greatly enhances computational efficiency and accelerates the convergence speed of the algorithm. Furthermore, we show that our solution remains unchanged regardless of how the data is partitioned, a property referred to as partition-insensitive. In theory, we use a concise proof framework to demonstrate that the algorithm exhibits linear convergence. Numerical experiments indicate that our algorithm performs competitively in both parallel and nonparallel environments. The R package for implementing the proposed algorithm can be obtained at
https://github.com/xfwu1016/PPADS
. |
|---|---|
| AbstractList | The Dantzig selector is a widely used and effective method for variable selection in ultra-high-dimensional data. Feature splitting is an efficient processing technique that involves dividing these ultra-high-dimensional variable datasets into manageable subsets that can be stored and processed more easily on a single machine. This paper proposes a variable splitting parallel algorithm for solving both convex and nonconvex Dantzig selectors based on the proximal point algorithm. The primary advantage of our parallel algorithm, compared to existing parallel approaches, is the significantly reduced number of iteration variables, which greatly enhances computational efficiency and accelerates the convergence speed of the algorithm. Furthermore, we show that our solution remains unchanged regardless of how the data is partitioned, a property referred to as partition-insensitive. In theory, we use a concise proof framework to demonstrate that the algorithm exhibits linear convergence. Numerical experiments indicate that our algorithm performs competitively in both parallel and nonparallel environments. The R package for implementing the proposed algorithm can be obtained at https://github.com/xfwu1016/PPADS. The Dantzig selector is a widely used and effective method for variable selection in ultra-high-dimensional data. Feature splitting is an efficient processing technique that involves dividing these ultra-high-dimensional variable datasets into manageable subsets that can be stored and processed more easily on a single machine. This paper proposes a variable splitting parallel algorithm for solving both convex and nonconvex Dantzig selectors based on the proximal point algorithm. The primary advantage of our parallel algorithm, compared to existing parallel approaches, is the significantly reduced number of iteration variables, which greatly enhances computational efficiency and accelerates the convergence speed of the algorithm. Furthermore, we show that our solution remains unchanged regardless of how the data is partitioned, a property referred to as partition-insensitive. In theory, we use a concise proof framework to demonstrate that the algorithm exhibits linear convergence. Numerical experiments indicate that our algorithm performs competitively in both parallel and nonparallel environments. The R package for implementing the proposed algorithm can be obtained at https://github.com/xfwu1016/PPADS . |
| ArticleNumber | 116 |
| Author | Tang, Shi Zhang, Zhimin Liang, Rongmei Wu, Xiaofei Chao, Yue |
| Author_xml | – sequence: 1 givenname: Xiaofei surname: Wu fullname: Wu, Xiaofei organization: College of Mathematics and Statistics, Chongqing University – sequence: 2 givenname: Yue surname: Chao fullname: Chao, Yue organization: Department of Statistics and Data Science, Xiamen University – sequence: 3 givenname: Rongmei surname: Liang fullname: Liang, Rongmei organization: Department os Statistics and Data Science, Southern University of Science and Technology – sequence: 4 givenname: Shi surname: Tang fullname: Tang, Shi organization: Big Data and Intelligence Engineering School, Chongqing College of International Business and Economics – sequence: 5 givenname: Zhimin surname: Zhang fullname: Zhang, Zhimin email: zmzhang@cqu.edu.cn organization: College of Mathematics and Statistics, Chongqing University |
| BookMark | eNp9kM1OwzAQhC1UJNrCC3CKxNng9W_DDRUKSJW4wNlyHCekSuNgu4fy9BiCxI3LrrSamdV8CzQb_OAQugRyDYSomwhAKcWECgxEihU-nqA5CMUwMCVmaE5KSTADxc_QIsYdIQCS8Tm63TiTDsEVcey7lLqhLUYTTN-7vjB960OX3vdF40Nxb4b02bVFdL2zyYd4jk4b00d38buX6G3z8Lp-wtuXx-f13RZbqmjCpcpfS1GvSl6VFdS8kisFXEENNWlAMU5L2rAm12BWSOaUMoJbW-WZz5Yt0dWUOwb_cXAx6Z0_hCG_1IyCFILJ3GWJ6KSywccYXKPH0O1NOGog-puRnhjpzEj_MNLHbGKTKWbx0LrwF_2P6wu5NGsB |
| Cites_doi | 10.1088/1361-6420/aa5ec5 10.1137/080716542 10.1016/j.csda.2012.04.019 10.1088/1361-6420/ac39f8 10.1214/09-AOS729 10.1214/009053607000000433 10.1111/j.1467-9868.2008.00668.x 10.1007/s10589-015-9748-2 10.1090/mcom/3822 10.1016/j.csda.2014.05.017 10.1137/110833543 10.1007/s12532-011-0029-5 10.1198/jasa.2008.tm08516 10.1080/00401706.2017.1345703 10.1017/CBO9780511804441 10.1016/j.patcog.2023.110134 10.1007/s10851-010-0251-1 10.1007/s11425-013-4683-0 10.1002/cjs.11151 10.1080/10618600.2022.2143785 10.1016/j.csda.2023.107901 10.1007/s10589-019-00152-3 10.1214/009053607000000451 10.1561/2200000016 10.1137/20M1364643 10.1214/009053607000000442 10.1137/140964357 10.1007/s10589-018-9994-1 10.1007/s40314-021-01450-5 10.1561/2400000003 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.csda.2015.04.005 10.1016/j.jeconom.2023.01.028 10.1007/s10107-014-0826-5 10.1126/science.286.5439.531 10.1198/016214501753382273 10.1214/009053607000000460 10.1007/s10589-013-9616-x 10.1198/016214506000000735 10.1016/j.apm.2024.115694 10.1007/978-981-16-9840-8 10.1214/009053607000000479 10.1080/10618600.2020.1840996 10.1016/j.jeconom.2022.04.004 10.1137/110836936 10.1016/j.csda.2024.108081 10.1007/s11222-024-10492-8 10.1214/009053607000000424 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11222-025-10658-y |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1573-1375 |
| ExternalDocumentID | 10_1007_s11222_025_10658_y |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 2271066 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Scientific and Technological Research Program of Chongqing Municipal Education Commission grantid: KJQN202302003; KJQN202302003; KJQN202302003 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEFIE AEKMD AFEXP AFGCZ AGGDS AGJBK AGQPQ AJBLW BBWZM BDATZ CAG CITATION COF EJD FINBP FSGXE H13 KOW N2Q NDZJH O9- OVD R4E RNI RZC RZE RZK S26 S28 SCJ SCLPG T16 TEORI ZWQNP JQ2 |
| ID | FETCH-LOGICAL-c272t-9717495d894b9b1d4b6871471d1d0f1734292f3f0073c563e77a54ccba54f3fc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001503367200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-3174 |
| IngestDate | Sat Nov 01 15:06:16 EDT 2025 Sat Nov 29 07:34:12 EST 2025 Tue Aug 26 01:10:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Partition-insensitive Parallel computing Proximal point algorithm Dantzig selector Feature splitting |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-9717495d894b9b1d4b6871471d1d0f1734292f3f0073c563e77a54ccba54f3fc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3216553616 |
| PQPubID | 2043829 |
| ParticipantIDs | proquest_journals_3216553616 crossref_primary_10_1007_s11222_025_10658_y springer_journals_10_1007_s11222_025_10658_y |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Statistics and computing |
| PublicationTitleAbbrev | Stat Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | J Fan (10658_CR18) 2001; 96 10658_CR43 PJ Bickel (10658_CR2) 2007; 35 Y Ritov (10658_CR46) 2007; 35 R Tibshirani (10658_CR48) 1996; 58 B Efron (10658_CR16) 2007; 35 C Li (10658_CR35) 2023; 32 C Chen (10658_CR9) 2016; 155 E Candès (10658_CR13) 2007; 35 A Prater (10658_CR45) 2015; 90 X Wu (10658_CR51) 2025; 203 A Beck (10658_CR5) 2009; 2 B He (10658_CR28) 2020; 75 MP Friedlander (10658_CR21) 2007; 35 S Chatterjee (10658_CR7) 2014; 3 X Wang (10658_CR54) 2012; 34 H He (10658_CR26) 2015; 62 S Park (10658_CR44) 2017; 27 H Ge (10658_CR24) 2021; 38 Z Lin (10658_CR34) 2022 X Li (10658_CR36) 2014; 79 X Wu (10658_CR52) 2025; 137 Y Fan (10658_CR20) 2021; 30 B He (10658_CR30) 2012; 50 X Li (10658_CR40) 2015; 16 E Candès (10658_CR14) 2007; 35 Z Lu (10658_CR37) 2012; 56 L Dicker (10658_CR15) 2013; 41 C Zhang (10658_CR57) 2010; 38 H Wang (10658_CR49) 2009; 104 A Chambolle (10658_CR12) 2011; 40 X Wu (10658_CR53) 2024; 192 H Zou (10658_CR59) 2006; 101 Y Gu (10658_CR22) 2018; 60 H He (10658_CR29) 2017; 33 N Meinshausen (10658_CR42) 2007; 35 TT Cai (10658_CR10) 2007; 35 J Wen (10658_CR56) 2024; 34 B He (10658_CR27) 2022; 92 S Becker (10658_CR1) 2010; 3 S Boyd (10658_CR3) 2010; 3 PJ Bickel (10658_CR4) 2008; 37 Z Cai (10658_CR11) 2024; 239 D Sun (10658_CR47) 2015; 25 X Cai (10658_CR8) 2013; 56 10658_CR55 S Fang (10658_CR19) 2021; 43 Y Li (10658_CR33) 2014; 24 R Liang (10658_CR38) 2024; 148 S Boyd (10658_CR6) 2004 10658_CR17 G Gu (10658_CR23) 2014; 59 X Mao (10658_CR41) 2021; 40 H Liu (10658_CR39) 2010; 9 H Zou (10658_CR58) 2008; 36 10658_CR50 TR Golub (10658_CR25) 1999; 286 B He (10658_CR31) 2018; 70 GM James (10658_CR32) 2008; 71 |
| References_xml | – volume: 33 start-page: 055003 issue: 5 year: 2017 ident: 10658_CR29 publication-title: Inverse Probl. doi: 10.1088/1361-6420/aa5ec5 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 10658_CR5 publication-title: SIAM J. Imag. Sci. doi: 10.1137/080716542 – volume: 35 start-page: 2313 issue: 6 year: 2007 ident: 10658_CR14 publication-title: Ann. Stat. – volume: 56 start-page: 4037 issue: 12 year: 2012 ident: 10658_CR37 publication-title: Comput. Stat. & Data Anal. doi: 10.1016/j.csda.2012.04.019 – volume: 38 start-page: 015006 issue: 1 year: 2021 ident: 10658_CR24 publication-title: Inverse Prob. doi: 10.1088/1361-6420/ac39f8 – ident: 10658_CR50 – volume: 38 start-page: 894 issue: 2 year: 2010 ident: 10658_CR57 publication-title: Ann. Stat. doi: 10.1214/09-AOS729 – volume: 35 start-page: 2358 issue: 6 year: 2007 ident: 10658_CR16 publication-title: Ann. Stat. doi: 10.1214/009053607000000433 – volume: 71 start-page: 127 issue: 1 year: 2008 ident: 10658_CR32 publication-title: J. R. Stat. Soc. Ser. B Stat Methodol. doi: 10.1111/j.1467-9868.2008.00668.x – volume: 62 start-page: 347 year: 2015 ident: 10658_CR26 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-015-9748-2 – volume: 92 start-page: 1633 year: 2022 ident: 10658_CR27 publication-title: Math. Comput. doi: 10.1090/mcom/3822 – volume: 79 start-page: 203 year: 2014 ident: 10658_CR36 publication-title: Comput. Stat. & Data Anal. doi: 10.1016/j.csda.2014.05.017 – volume: 34 start-page: 2792 issue: 5 year: 2012 ident: 10658_CR54 publication-title: SIAM J. Sci. Comput. doi: 10.1137/110833543 – volume: 3 start-page: 165 year: 2010 ident: 10658_CR1 publication-title: Math. Program. Comput. doi: 10.1007/s12532-011-0029-5 – volume: 104 start-page: 1512 issue: 488 year: 2009 ident: 10658_CR49 publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2008.tm08516 – ident: 10658_CR17 – volume: 60 start-page: 319 issue: 3 year: 2018 ident: 10658_CR22 publication-title: Technometrics doi: 10.1080/00401706.2017.1345703 – volume-title: Convex Optimization year: 2004 ident: 10658_CR6 doi: 10.1017/CBO9780511804441 – volume: 148 start-page: 110134 year: 2024 ident: 10658_CR38 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2023.110134 – volume: 27 start-page: 1619 year: 2017 ident: 10658_CR44 publication-title: Stat. Sin. – volume: 40 start-page: 120 year: 2011 ident: 10658_CR12 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-010-0251-1 – volume: 35 start-page: 2392 issue: 6 year: 2007 ident: 10658_CR13 publication-title: Ann. Stat. – volume: 56 start-page: 2179 issue: 10 year: 2013 ident: 10658_CR8 publication-title: SCIENCE CHINA Math. doi: 10.1007/s11425-013-4683-0 – volume: 24 start-page: 251 issue: 1 year: 2014 ident: 10658_CR33 publication-title: Stat. Sin. – volume: 41 start-page: 23 issue: 1 year: 2013 ident: 10658_CR15 publication-title: Can. J. Stat. doi: 10.1002/cjs.11151 – volume: 32 start-page: 1074 issue: 3 year: 2023 ident: 10658_CR35 publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2022.2143785 – volume: 192 start-page: 107901 year: 2024 ident: 10658_CR53 publication-title: Comput. Stat. & Data Anal. doi: 10.1016/j.csda.2023.107901 – volume: 75 start-page: 361 year: 2020 ident: 10658_CR28 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-019-00152-3 – volume: 35 start-page: 2370 issue: 6 year: 2007 ident: 10658_CR46 publication-title: Ann. Stat. doi: 10.1214/009053607000000451 – volume: 3 start-page: 1 issue: 1 year: 2010 ident: 10658_CR3 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – volume: 43 start-page: 4147 year: 2021 ident: 10658_CR19 publication-title: SIAM J. Sci. Comput. doi: 10.1137/20M1364643 – volume: 35 start-page: 2365 issue: 6 year: 2007 ident: 10658_CR10 publication-title: Ann. Stat. doi: 10.1214/009053607000000442 – volume: 25 start-page: 882 issue: 2 year: 2015 ident: 10658_CR47 publication-title: SIAM J. Optim. doi: 10.1137/140964357 – volume: 70 start-page: 791 year: 2018 ident: 10658_CR31 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-018-9994-1 – volume: 40 start-page: 1 year: 2021 ident: 10658_CR41 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-021-01450-5 – volume: 3 start-page: 1934 year: 2014 ident: 10658_CR7 publication-title: Neural Information Processing Systems – ident: 10658_CR43 doi: 10.1561/2400000003 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10658_CR48 publication-title: J. R. Stat. Soc., Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 90 start-page: 36 year: 2015 ident: 10658_CR45 publication-title: Comput. Stat. & Data Anal. doi: 10.1016/j.csda.2015.04.005 – ident: 10658_CR55 doi: 10.1016/j.jeconom.2023.01.028 – volume: 36 start-page: 1509 issue: 4 year: 2008 ident: 10658_CR58 publication-title: Ann. Stat. – volume: 155 start-page: 57 issue: 1–2 year: 2016 ident: 10658_CR9 publication-title: Math. Program. doi: 10.1007/s10107-014-0826-5 – volume: 286 start-page: 531 issue: 5439 year: 1999 ident: 10658_CR25 publication-title: Sci. doi: 10.1126/science.286.5439.531 – volume: 96 start-page: 1348 issue: 456 year: 2001 ident: 10658_CR18 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – volume: 35 start-page: 2373 issue: 6 year: 2007 ident: 10658_CR42 publication-title: Ann. Stat. doi: 10.1214/009053607000000460 – volume: 59 start-page: 135 year: 2014 ident: 10658_CR23 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-013-9616-x – volume: 101 start-page: 1418 year: 2006 ident: 10658_CR59 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000000735 – volume: 137 start-page: 115694 year: 2025 ident: 10658_CR52 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2024.115694 – volume-title: Alternating Direction Method of Multipliers for Machine Learning year: 2022 ident: 10658_CR34 doi: 10.1007/978-981-16-9840-8 – volume: 16 start-page: 553 issue: 18 year: 2015 ident: 10658_CR40 publication-title: J. Mach. Learn. Res. – volume: 35 start-page: 2385 issue: 6 year: 2007 ident: 10658_CR21 publication-title: Ann. Stat. doi: 10.1214/009053607000000479 – volume: 30 start-page: 557 issue: 3 year: 2021 ident: 10658_CR20 publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2020.1840996 – volume: 37 start-page: 1705 year: 2008 ident: 10658_CR4 publication-title: Ann. Stat. – volume: 239 start-page: 105291 issue: 2 year: 2024 ident: 10658_CR11 publication-title: J. Econom. doi: 10.1016/j.jeconom.2022.04.004 – volume: 50 start-page: 700 issue: 2 year: 2012 ident: 10658_CR30 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110836936 – volume: 203 start-page: 108081 year: 2025 ident: 10658_CR51 publication-title: Comput. Stat. & Data Anal. doi: 10.1016/j.csda.2024.108081 – volume: 34 start-page: 1573 year: 2024 ident: 10658_CR56 publication-title: Stat. Comput. doi: 10.1007/s11222-024-10492-8 – volume: 9 start-page: 461 year: 2010 ident: 10658_CR39 publication-title: Int. Conf. Artif. Intell. Stat. – volume: 35 start-page: 2352 issue: 6 year: 2007 ident: 10658_CR2 publication-title: Ann. Stat. doi: 10.1214/009053607000000424 |
| SSID | ssj0011634 |
| Score | 2.4086044 |
| Snippet | The Dantzig selector is a widely used and effective method for variable selection in ultra-high-dimensional data. Feature splitting is an efficient processing... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Convergence Original Paper Probability and Statistics in Computer Science Selectors Splitting Statistical Theory and Methods Statistics and Computing/Statistics Programs |
| Title | Feature splitting parallel algorithm for Dantzig selectors |
| URI | https://link.springer.com/article/10.1007/s11222-025-10658-y https://www.proquest.com/docview/3216553616 |
| Volume | 35 |
| WOSCitedRecordID | wos001503367200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYSgDhQKiUJAHNrBU52EnbAhRMUCFeFTdojhOSqW0RUmKVH495zwagWCAJUMeVnL2-fuc830HcCakwVWPS-oG6ORWxBT1tRCkQmhgSgnfz_MrhndiMHBGI_ehTApLq93uVUgyn6nrZDeGWEZ1-VWmcZMu12ED4c7R7vj4NFzFDpBh5KJRyM1xhhFWmSrzcxtf4ajmmN_Cojna9Fv_e88d2C7ZJbkqhsMurIWzNrSqyg2kdOQ2bN2v1FrTNjQ14ywEm_fgUpPCRRKSFOlpvimaaHnwOA5j4sfjeTLJXqcEqS7BAZN9TMYkDYtf_-k-vPRvnq9vaVlggQaGMDLq4loOF0jKcS3pSqYsyXH9hHClmOpFTJi6llVkRjqcF9jcDIXwbSsIJB7xdGAeQGM2n4WHQBzLYNJkMpK2oSXPpN5dil_Pkf7gs34Hzis7e2-FjoZXKyZri3loMS-3mLfsQLfqCq_0qdQzDcZt2-SMd-CiMn19-ffWjv52-zE0jaL3aI91oZEli_AENoN37InkNB9rn0uLzXo |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CtaD1apYrboHb7rQzbPxJmJRbItoLb0t2WxSC7GVJBXqr3c2jwZFD3rJIY8lmdnd-SYz8w3AmS00S7YsQR0PF7kRMEldRQQp0TQwKW3XTesrhl2732-PRs5DXhQWF9nuRUgy3anLYjeGtoyq9qtM2U26WIU1Ay2WSuR7fBouYweIMFLSKMTmuMPYRl4q8_MYX81RiTG_hUVTa9Op_e89t2ErR5fkKpsOO7DiT-tQKzo3kHwh12Gzt2RrjetQVYgzI2zehUsFCueRT2KEp2lSNFH04GHoh8QNx7Nokry8EoS6BCdM8jEZk9jPfv3He_DcuRlc39K8wQL1NFtLqIO-HDpIsu0YwhFMGsJC_wnNlWSyFTBbV72sAj1Q4TzPtHTftl3T8DyBRzzt6ftQmc6m_gGQNmpC6EwEwtQU5ZlQ2aX49RbCH3zWbcB5IWf-lvFo8JIxWUmMo8R4KjG-aECzUAXP11TMdY1ZpqlbzGrARSH68vLvox3-7fZT2Lgd9Lq8e9e_P4KqlmmStlgTKkk0949h3XtHrUQn6bz7BPcz0F4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60itSDj6pYrboHbxrazWPTeBO1KNZSUEtvIZtNaiGmJUmF-uudzaNR0YN4ySGPJZmZzXzDzHwDcGpylYkW44rl4ibXfSoURxJBCnQNVAjTcdL-ikHX7PXaw6HV_9TFn1a7FynJrKdBsjSFSXMq_GbZ-EbRrylyFCuVPlSZL8OKLocGyXj9cbDIIyDaSAmkEKfj38bU87aZn9f46ppKvPktRZp6ns7m_995CzZy1EkuMzPZhiUvrMFmMdGB5Bu8BusPCxbXuAZViUQzIucduJBgcRZ5JEbYmhZLE0kbHgReQJxgNInGycsrQQhM0JCS9_GIxF6WEoh34blz83R1q-SDFxRXNdVEsTDGw8BJtC2dW5wKnTOMq9CNCSpaPjU1OePK13yZ5nMNpnmm6Ri663I84mlX24NKOAm9fSBtXaVco9znhiqp0LisOsWvZwiL8FmnDmeFzO1pxq9hl0zKUmI2SsxOJWbP69Ao1GLney22NZUyw9AYZXU4L9RQXv59tYO_3X4Ca_3rjt29690fQlXNFKm0aAMqSTTzjmDVfUOlRMepCX4AwuzZQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+splitting+parallel+algorithm+for+Dantzig+selectors&rft.jtitle=Statistics+and+computing&rft.au=Wu%2C+Xiaofei&rft.au=Chao%2C+Yue&rft.au=Liang%2C+Rongmei&rft.au=Tang%2C+Shi&rft.date=2025-10-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=35&rft.issue=5&rft_id=info:doi/10.1007%2Fs11222-025-10658-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_025_10658_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |