Feature splitting parallel algorithm for Dantzig selectors

The Dantzig selector is a widely used and effective method for variable selection in ultra-high-dimensional data. Feature splitting is an efficient processing technique that involves dividing these ultra-high-dimensional variable datasets into manageable subsets that can be stored and processed more...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics and computing Ročník 35; číslo 5
Hlavní autoři: Wu, Xiaofei, Chao, Yue, Liang, Rongmei, Tang, Shi, Zhang, Zhimin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2025
Springer Nature B.V
Témata:
ISSN:0960-3174, 1573-1375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Dantzig selector is a widely used and effective method for variable selection in ultra-high-dimensional data. Feature splitting is an efficient processing technique that involves dividing these ultra-high-dimensional variable datasets into manageable subsets that can be stored and processed more easily on a single machine. This paper proposes a variable splitting parallel algorithm for solving both convex and nonconvex Dantzig selectors based on the proximal point algorithm. The primary advantage of our parallel algorithm, compared to existing parallel approaches, is the significantly reduced number of iteration variables, which greatly enhances computational efficiency and accelerates the convergence speed of the algorithm. Furthermore, we show that our solution remains unchanged regardless of how the data is partitioned, a property referred to as partition-insensitive. In theory, we use a concise proof framework to demonstrate that the algorithm exhibits linear convergence. Numerical experiments indicate that our algorithm performs competitively in both parallel and nonparallel environments. The R package for implementing the proposed algorithm can be obtained at https://github.com/xfwu1016/PPADS .
AbstractList The Dantzig selector is a widely used and effective method for variable selection in ultra-high-dimensional data. Feature splitting is an efficient processing technique that involves dividing these ultra-high-dimensional variable datasets into manageable subsets that can be stored and processed more easily on a single machine. This paper proposes a variable splitting parallel algorithm for solving both convex and nonconvex Dantzig selectors based on the proximal point algorithm. The primary advantage of our parallel algorithm, compared to existing parallel approaches, is the significantly reduced number of iteration variables, which greatly enhances computational efficiency and accelerates the convergence speed of the algorithm. Furthermore, we show that our solution remains unchanged regardless of how the data is partitioned, a property referred to as partition-insensitive. In theory, we use a concise proof framework to demonstrate that the algorithm exhibits linear convergence. Numerical experiments indicate that our algorithm performs competitively in both parallel and nonparallel environments. The R package for implementing the proposed algorithm can be obtained at https://github.com/xfwu1016/PPADS.
The Dantzig selector is a widely used and effective method for variable selection in ultra-high-dimensional data. Feature splitting is an efficient processing technique that involves dividing these ultra-high-dimensional variable datasets into manageable subsets that can be stored and processed more easily on a single machine. This paper proposes a variable splitting parallel algorithm for solving both convex and nonconvex Dantzig selectors based on the proximal point algorithm. The primary advantage of our parallel algorithm, compared to existing parallel approaches, is the significantly reduced number of iteration variables, which greatly enhances computational efficiency and accelerates the convergence speed of the algorithm. Furthermore, we show that our solution remains unchanged regardless of how the data is partitioned, a property referred to as partition-insensitive. In theory, we use a concise proof framework to demonstrate that the algorithm exhibits linear convergence. Numerical experiments indicate that our algorithm performs competitively in both parallel and nonparallel environments. The R package for implementing the proposed algorithm can be obtained at https://github.com/xfwu1016/PPADS .
ArticleNumber 116
Author Tang, Shi
Zhang, Zhimin
Liang, Rongmei
Wu, Xiaofei
Chao, Yue
Author_xml – sequence: 1
  givenname: Xiaofei
  surname: Wu
  fullname: Wu, Xiaofei
  organization: College of Mathematics and Statistics, Chongqing University
– sequence: 2
  givenname: Yue
  surname: Chao
  fullname: Chao, Yue
  organization: Department of Statistics and Data Science, Xiamen University
– sequence: 3
  givenname: Rongmei
  surname: Liang
  fullname: Liang, Rongmei
  organization: Department os Statistics and Data Science, Southern University of Science and Technology
– sequence: 4
  givenname: Shi
  surname: Tang
  fullname: Tang, Shi
  organization: Big Data and Intelligence Engineering School, Chongqing College of International Business and Economics
– sequence: 5
  givenname: Zhimin
  surname: Zhang
  fullname: Zhang, Zhimin
  email: zmzhang@cqu.edu.cn
  organization: College of Mathematics and Statistics, Chongqing University
BookMark eNp9kM1OwzAQhC1UJNrCC3CKxNng9W_DDRUKSJW4wNlyHCekSuNgu4fy9BiCxI3LrrSamdV8CzQb_OAQugRyDYSomwhAKcWECgxEihU-nqA5CMUwMCVmaE5KSTADxc_QIsYdIQCS8Tm63TiTDsEVcey7lLqhLUYTTN-7vjB960OX3vdF40Nxb4b02bVFdL2zyYd4jk4b00d38buX6G3z8Lp-wtuXx-f13RZbqmjCpcpfS1GvSl6VFdS8kisFXEENNWlAMU5L2rAm12BWSOaUMoJbW-WZz5Yt0dWUOwb_cXAx6Z0_hCG_1IyCFILJ3GWJ6KSywccYXKPH0O1NOGog-puRnhjpzEj_MNLHbGKTKWbx0LrwF_2P6wu5NGsB
Cites_doi 10.1088/1361-6420/aa5ec5
10.1137/080716542
10.1016/j.csda.2012.04.019
10.1088/1361-6420/ac39f8
10.1214/09-AOS729
10.1214/009053607000000433
10.1111/j.1467-9868.2008.00668.x
10.1007/s10589-015-9748-2
10.1090/mcom/3822
10.1016/j.csda.2014.05.017
10.1137/110833543
10.1007/s12532-011-0029-5
10.1198/jasa.2008.tm08516
10.1080/00401706.2017.1345703
10.1017/CBO9780511804441
10.1016/j.patcog.2023.110134
10.1007/s10851-010-0251-1
10.1007/s11425-013-4683-0
10.1002/cjs.11151
10.1080/10618600.2022.2143785
10.1016/j.csda.2023.107901
10.1007/s10589-019-00152-3
10.1214/009053607000000451
10.1561/2200000016
10.1137/20M1364643
10.1214/009053607000000442
10.1137/140964357
10.1007/s10589-018-9994-1
10.1007/s40314-021-01450-5
10.1561/2400000003
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.csda.2015.04.005
10.1016/j.jeconom.2023.01.028
10.1007/s10107-014-0826-5
10.1126/science.286.5439.531
10.1198/016214501753382273
10.1214/009053607000000460
10.1007/s10589-013-9616-x
10.1198/016214506000000735
10.1016/j.apm.2024.115694
10.1007/978-981-16-9840-8
10.1214/009053607000000479
10.1080/10618600.2020.1840996
10.1016/j.jeconom.2022.04.004
10.1137/110836936
10.1016/j.csda.2024.108081
10.1007/s11222-024-10492-8
10.1214/009053607000000424
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11222-025-10658-y
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10_1007_s11222_025_10658_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 2271066
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Scientific and Technological Research Program of Chongqing Municipal Education Commission
  grantid: KJQN202302003; KJQN202302003; KJQN202302003
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFGCZ
AGGDS
AGJBK
AGQPQ
AJBLW
BBWZM
BDATZ
CAG
CITATION
COF
EJD
FINBP
FSGXE
H13
KOW
N2Q
NDZJH
O9-
OVD
R4E
RNI
RZC
RZE
RZK
S26
S28
SCJ
SCLPG
T16
TEORI
ZWQNP
JQ2
ID FETCH-LOGICAL-c272t-9717495d894b9b1d4b6871471d1d0f1734292f3f0073c563e77a54ccba54f3fc3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001503367200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Sat Nov 01 15:06:16 EDT 2025
Sat Nov 29 07:34:12 EST 2025
Tue Aug 26 01:10:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Partition-insensitive
Parallel computing
Proximal point algorithm
Dantzig selector
Feature splitting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-9717495d894b9b1d4b6871471d1d0f1734292f3f0073c563e77a54ccba54f3fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3216553616
PQPubID 2043829
ParticipantIDs proquest_journals_3216553616
crossref_primary_10_1007_s11222_025_10658_y
springer_journals_10_1007_s11222_025_10658_y
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References J Fan (10658_CR18) 2001; 96
10658_CR43
PJ Bickel (10658_CR2) 2007; 35
Y Ritov (10658_CR46) 2007; 35
R Tibshirani (10658_CR48) 1996; 58
B Efron (10658_CR16) 2007; 35
C Li (10658_CR35) 2023; 32
C Chen (10658_CR9) 2016; 155
E Candès (10658_CR13) 2007; 35
A Prater (10658_CR45) 2015; 90
X Wu (10658_CR51) 2025; 203
A Beck (10658_CR5) 2009; 2
B He (10658_CR28) 2020; 75
MP Friedlander (10658_CR21) 2007; 35
S Chatterjee (10658_CR7) 2014; 3
X Wang (10658_CR54) 2012; 34
H He (10658_CR26) 2015; 62
S Park (10658_CR44) 2017; 27
H Ge (10658_CR24) 2021; 38
Z Lin (10658_CR34) 2022
X Li (10658_CR36) 2014; 79
X Wu (10658_CR52) 2025; 137
Y Fan (10658_CR20) 2021; 30
B He (10658_CR30) 2012; 50
X Li (10658_CR40) 2015; 16
E Candès (10658_CR14) 2007; 35
Z Lu (10658_CR37) 2012; 56
L Dicker (10658_CR15) 2013; 41
C Zhang (10658_CR57) 2010; 38
H Wang (10658_CR49) 2009; 104
A Chambolle (10658_CR12) 2011; 40
X Wu (10658_CR53) 2024; 192
H Zou (10658_CR59) 2006; 101
Y Gu (10658_CR22) 2018; 60
H He (10658_CR29) 2017; 33
N Meinshausen (10658_CR42) 2007; 35
TT Cai (10658_CR10) 2007; 35
J Wen (10658_CR56) 2024; 34
B He (10658_CR27) 2022; 92
S Becker (10658_CR1) 2010; 3
S Boyd (10658_CR3) 2010; 3
PJ Bickel (10658_CR4) 2008; 37
Z Cai (10658_CR11) 2024; 239
D Sun (10658_CR47) 2015; 25
X Cai (10658_CR8) 2013; 56
10658_CR55
S Fang (10658_CR19) 2021; 43
Y Li (10658_CR33) 2014; 24
R Liang (10658_CR38) 2024; 148
S Boyd (10658_CR6) 2004
10658_CR17
G Gu (10658_CR23) 2014; 59
X Mao (10658_CR41) 2021; 40
H Liu (10658_CR39) 2010; 9
H Zou (10658_CR58) 2008; 36
10658_CR50
TR Golub (10658_CR25) 1999; 286
B He (10658_CR31) 2018; 70
GM James (10658_CR32) 2008; 71
References_xml – volume: 33
  start-page: 055003
  issue: 5
  year: 2017
  ident: 10658_CR29
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aa5ec5
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10658_CR5
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080716542
– volume: 35
  start-page: 2313
  issue: 6
  year: 2007
  ident: 10658_CR14
  publication-title: Ann. Stat.
– volume: 56
  start-page: 4037
  issue: 12
  year: 2012
  ident: 10658_CR37
  publication-title: Comput. Stat. & Data Anal.
  doi: 10.1016/j.csda.2012.04.019
– volume: 38
  start-page: 015006
  issue: 1
  year: 2021
  ident: 10658_CR24
  publication-title: Inverse Prob.
  doi: 10.1088/1361-6420/ac39f8
– ident: 10658_CR50
– volume: 38
  start-page: 894
  issue: 2
  year: 2010
  ident: 10658_CR57
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– volume: 35
  start-page: 2358
  issue: 6
  year: 2007
  ident: 10658_CR16
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000433
– volume: 71
  start-page: 127
  issue: 1
  year: 2008
  ident: 10658_CR32
  publication-title: J. R. Stat. Soc. Ser. B Stat Methodol.
  doi: 10.1111/j.1467-9868.2008.00668.x
– volume: 62
  start-page: 347
  year: 2015
  ident: 10658_CR26
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-015-9748-2
– volume: 92
  start-page: 1633
  year: 2022
  ident: 10658_CR27
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3822
– volume: 79
  start-page: 203
  year: 2014
  ident: 10658_CR36
  publication-title: Comput. Stat. & Data Anal.
  doi: 10.1016/j.csda.2014.05.017
– volume: 34
  start-page: 2792
  issue: 5
  year: 2012
  ident: 10658_CR54
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110833543
– volume: 3
  start-page: 165
  year: 2010
  ident: 10658_CR1
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-011-0029-5
– volume: 104
  start-page: 1512
  issue: 488
  year: 2009
  ident: 10658_CR49
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2008.tm08516
– ident: 10658_CR17
– volume: 60
  start-page: 319
  issue: 3
  year: 2018
  ident: 10658_CR22
  publication-title: Technometrics
  doi: 10.1080/00401706.2017.1345703
– volume-title: Convex Optimization
  year: 2004
  ident: 10658_CR6
  doi: 10.1017/CBO9780511804441
– volume: 148
  start-page: 110134
  year: 2024
  ident: 10658_CR38
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2023.110134
– volume: 27
  start-page: 1619
  year: 2017
  ident: 10658_CR44
  publication-title: Stat. Sin.
– volume: 40
  start-page: 120
  year: 2011
  ident: 10658_CR12
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-010-0251-1
– volume: 35
  start-page: 2392
  issue: 6
  year: 2007
  ident: 10658_CR13
  publication-title: Ann. Stat.
– volume: 56
  start-page: 2179
  issue: 10
  year: 2013
  ident: 10658_CR8
  publication-title: SCIENCE CHINA Math.
  doi: 10.1007/s11425-013-4683-0
– volume: 24
  start-page: 251
  issue: 1
  year: 2014
  ident: 10658_CR33
  publication-title: Stat. Sin.
– volume: 41
  start-page: 23
  issue: 1
  year: 2013
  ident: 10658_CR15
  publication-title: Can. J. Stat.
  doi: 10.1002/cjs.11151
– volume: 32
  start-page: 1074
  issue: 3
  year: 2023
  ident: 10658_CR35
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2022.2143785
– volume: 192
  start-page: 107901
  year: 2024
  ident: 10658_CR53
  publication-title: Comput. Stat. & Data Anal.
  doi: 10.1016/j.csda.2023.107901
– volume: 75
  start-page: 361
  year: 2020
  ident: 10658_CR28
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00152-3
– volume: 35
  start-page: 2370
  issue: 6
  year: 2007
  ident: 10658_CR46
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000451
– volume: 3
  start-page: 1
  issue: 1
  year: 2010
  ident: 10658_CR3
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 43
  start-page: 4147
  year: 2021
  ident: 10658_CR19
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1364643
– volume: 35
  start-page: 2365
  issue: 6
  year: 2007
  ident: 10658_CR10
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000442
– volume: 25
  start-page: 882
  issue: 2
  year: 2015
  ident: 10658_CR47
  publication-title: SIAM J. Optim.
  doi: 10.1137/140964357
– volume: 70
  start-page: 791
  year: 2018
  ident: 10658_CR31
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-018-9994-1
– volume: 40
  start-page: 1
  year: 2021
  ident: 10658_CR41
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-021-01450-5
– volume: 3
  start-page: 1934
  year: 2014
  ident: 10658_CR7
  publication-title: Neural Information Processing Systems
– ident: 10658_CR43
  doi: 10.1561/2400000003
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10658_CR48
  publication-title: J. R. Stat. Soc., Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 90
  start-page: 36
  year: 2015
  ident: 10658_CR45
  publication-title: Comput. Stat. & Data Anal.
  doi: 10.1016/j.csda.2015.04.005
– ident: 10658_CR55
  doi: 10.1016/j.jeconom.2023.01.028
– volume: 36
  start-page: 1509
  issue: 4
  year: 2008
  ident: 10658_CR58
  publication-title: Ann. Stat.
– volume: 155
  start-page: 57
  issue: 1–2
  year: 2016
  ident: 10658_CR9
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0826-5
– volume: 286
  start-page: 531
  issue: 5439
  year: 1999
  ident: 10658_CR25
  publication-title: Sci.
  doi: 10.1126/science.286.5439.531
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  ident: 10658_CR18
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 35
  start-page: 2373
  issue: 6
  year: 2007
  ident: 10658_CR42
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000460
– volume: 59
  start-page: 135
  year: 2014
  ident: 10658_CR23
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-013-9616-x
– volume: 101
  start-page: 1418
  year: 2006
  ident: 10658_CR59
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 137
  start-page: 115694
  year: 2025
  ident: 10658_CR52
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2024.115694
– volume-title: Alternating Direction Method of Multipliers for Machine Learning
  year: 2022
  ident: 10658_CR34
  doi: 10.1007/978-981-16-9840-8
– volume: 16
  start-page: 553
  issue: 18
  year: 2015
  ident: 10658_CR40
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 2385
  issue: 6
  year: 2007
  ident: 10658_CR21
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000479
– volume: 30
  start-page: 557
  issue: 3
  year: 2021
  ident: 10658_CR20
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2020.1840996
– volume: 37
  start-page: 1705
  year: 2008
  ident: 10658_CR4
  publication-title: Ann. Stat.
– volume: 239
  start-page: 105291
  issue: 2
  year: 2024
  ident: 10658_CR11
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2022.04.004
– volume: 50
  start-page: 700
  issue: 2
  year: 2012
  ident: 10658_CR30
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110836936
– volume: 203
  start-page: 108081
  year: 2025
  ident: 10658_CR51
  publication-title: Comput. Stat. & Data Anal.
  doi: 10.1016/j.csda.2024.108081
– volume: 34
  start-page: 1573
  year: 2024
  ident: 10658_CR56
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-024-10492-8
– volume: 9
  start-page: 461
  year: 2010
  ident: 10658_CR39
  publication-title: Int. Conf. Artif. Intell. Stat.
– volume: 35
  start-page: 2352
  issue: 6
  year: 2007
  ident: 10658_CR2
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000424
SSID ssj0011634
Score 2.4086044
Snippet The Dantzig selector is a widely used and effective method for variable selection in ultra-high-dimensional data. Feature splitting is an efficient processing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Convergence
Original Paper
Probability and Statistics in Computer Science
Selectors
Splitting
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Title Feature splitting parallel algorithm for Dantzig selectors
URI https://link.springer.com/article/10.1007/s11222-025-10658-y
https://www.proquest.com/docview/3216553616
Volume 35
WOSCitedRecordID wos001503367200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYSgDhQKiUJAHNrBU52EnbAhRMUCFeFTdojhOSqW0RUmKVH495zwagWCAJUMeVnL2-fuc830HcCakwVWPS-oG6ORWxBT1tRCkQmhgSgnfz_MrhndiMHBGI_ehTApLq93uVUgyn6nrZDeGWEZ1-VWmcZMu12ED4c7R7vj4NFzFDpBh5KJRyM1xhhFWmSrzcxtf4ajmmN_Cojna9Fv_e88d2C7ZJbkqhsMurIWzNrSqyg2kdOQ2bN2v1FrTNjQ14ywEm_fgUpPCRRKSFOlpvimaaHnwOA5j4sfjeTLJXqcEqS7BAZN9TMYkDYtf_-k-vPRvnq9vaVlggQaGMDLq4loOF0jKcS3pSqYsyXH9hHClmOpFTJi6llVkRjqcF9jcDIXwbSsIJB7xdGAeQGM2n4WHQBzLYNJkMpK2oSXPpN5dil_Pkf7gs34Hzis7e2-FjoZXKyZri3loMS-3mLfsQLfqCq_0qdQzDcZt2-SMd-CiMn19-ffWjv52-zE0jaL3aI91oZEli_AENoN37InkNB9rn0uLzXo
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CtaD1apYrboHb7rQzbPxJmJRbItoLb0t2WxSC7GVJBXqr3c2jwZFD3rJIY8lmdnd-SYz8w3AmS00S7YsQR0PF7kRMEldRQQp0TQwKW3XTesrhl2732-PRs5DXhQWF9nuRUgy3anLYjeGtoyq9qtM2U26WIU1Ay2WSuR7fBouYweIMFLSKMTmuMPYRl4q8_MYX81RiTG_hUVTa9Op_e89t2ErR5fkKpsOO7DiT-tQKzo3kHwh12Gzt2RrjetQVYgzI2zehUsFCueRT2KEp2lSNFH04GHoh8QNx7Nokry8EoS6BCdM8jEZk9jPfv3He_DcuRlc39K8wQL1NFtLqIO-HDpIsu0YwhFMGsJC_wnNlWSyFTBbV72sAj1Q4TzPtHTftl3T8DyBRzzt6ftQmc6m_gGQNmpC6EwEwtQU5ZlQ2aX49RbCH3zWbcB5IWf-lvFo8JIxWUmMo8R4KjG-aECzUAXP11TMdY1ZpqlbzGrARSH68vLvox3-7fZT2Lgd9Lq8e9e_P4KqlmmStlgTKkk0949h3XtHrUQn6bz7BPcz0F4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60itSDj6pYrboHbxrazWPTeBO1KNZSUEtvIZtNaiGmJUmF-uudzaNR0YN4ySGPJZmZzXzDzHwDcGpylYkW44rl4ibXfSoURxJBCnQNVAjTcdL-ikHX7PXaw6HV_9TFn1a7FynJrKdBsjSFSXMq_GbZ-EbRrylyFCuVPlSZL8OKLocGyXj9cbDIIyDaSAmkEKfj38bU87aZn9f46ppKvPktRZp6ns7m_995CzZy1EkuMzPZhiUvrMFmMdGB5Bu8BusPCxbXuAZViUQzIucduJBgcRZ5JEbYmhZLE0kbHgReQJxgNInGycsrQQhM0JCS9_GIxF6WEoh34blz83R1q-SDFxRXNdVEsTDGw8BJtC2dW5wKnTOMq9CNCSpaPjU1OePK13yZ5nMNpnmm6Ri663I84mlX24NKOAm9fSBtXaVco9znhiqp0LisOsWvZwiL8FmnDmeFzO1pxq9hl0zKUmI2SsxOJWbP69Ao1GLney22NZUyw9AYZXU4L9RQXv59tYO_3X4Ca_3rjt29690fQlXNFKm0aAMqSTTzjmDVfUOlRMepCX4AwuzZQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+splitting+parallel+algorithm+for+Dantzig+selectors&rft.jtitle=Statistics+and+computing&rft.au=Wu%2C+Xiaofei&rft.au=Chao%2C+Yue&rft.au=Liang%2C+Rongmei&rft.au=Tang%2C+Shi&rft.date=2025-10-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=35&rft.issue=5&rft_id=info:doi/10.1007%2Fs11222-025-10658-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_025_10658_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon