A New Golden Ratio Inertial Algorithm with Two Types of Self Adaptive Step Sizes for Solving Nonlinear Inclusion Problems

The main purpose of this paper is to extend the golden ratio algorithm for monotone mixed variational inequalities (Math Program 184(1):383–410, 2020) to solve a nonlinear inclusion problem that involves non-monotone and locally Lipschitz continuous operators. We show that the developed iterative se...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 103; číslo 3; s. 86
Hlavní autoři: Wang, Zhong-bao, Chen, Xing-yu, Chen, Zhang-you
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2025
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The main purpose of this paper is to extend the golden ratio algorithm for monotone mixed variational inequalities (Math Program 184(1):383–410, 2020) to solve a nonlinear inclusion problem that involves non-monotone and locally Lipschitz continuous operators. We show that the developed iterative sequence converges towards some solution of the nonlinear inclusion problem. Furthermore, our analysis reveals our algorithm owns the O ( 1 k ) convergence rate and the linear convergence rate. In addition to inheriting all the benefits of the golden ratio algorithm from (Math Program 184(1):383–410, 2020), our algorithm has inertial accelerations and two types of self adaptive step sizes, when applied to monotone mixed variational inequalities.
AbstractList The main purpose of this paper is to extend the golden ratio algorithm for monotone mixed variational inequalities (Math Program 184(1):383–410, 2020) to solve a nonlinear inclusion problem that involves non-monotone and locally Lipschitz continuous operators. We show that the developed iterative sequence converges towards some solution of the nonlinear inclusion problem. Furthermore, our analysis reveals our algorithm owns the O(1k) convergence rate and the linear convergence rate. In addition to inheriting all the benefits of the golden ratio algorithm from (Math Program 184(1):383–410, 2020), our algorithm has inertial accelerations and two types of self adaptive step sizes, when applied to monotone mixed variational inequalities.
The main purpose of this paper is to extend the golden ratio algorithm for monotone mixed variational inequalities (Math Program 184(1):383–410, 2020) to solve a nonlinear inclusion problem that involves non-monotone and locally Lipschitz continuous operators. We show that the developed iterative sequence converges towards some solution of the nonlinear inclusion problem. Furthermore, our analysis reveals our algorithm owns the O ( 1 k ) convergence rate and the linear convergence rate. In addition to inheriting all the benefits of the golden ratio algorithm from (Math Program 184(1):383–410, 2020), our algorithm has inertial accelerations and two types of self adaptive step sizes, when applied to monotone mixed variational inequalities.
ArticleNumber 86
Author Chen, Zhang-you
Wang, Zhong-bao
Chen, Xing-yu
Author_xml – sequence: 1
  givenname: Zhong-bao
  orcidid: 0000-0002-1912-9408
  surname: Wang
  fullname: Wang, Zhong-bao
  email: zhongbaowang@hotmail.com
  organization: Department of Mathematics, Southwest Jiaotong University, National Engineering Laboratory of Integrated Transportation Big Data Application Technology
– sequence: 2
  givenname: Xing-yu
  surname: Chen
  fullname: Chen, Xing-yu
  organization: Department of Mathematics, Southwest Jiaotong University
– sequence: 3
  givenname: Zhang-you
  surname: Chen
  fullname: Chen, Zhang-you
  organization: Department of Mathematics, Southwest Jiaotong University, National Engineering Laboratory of Integrated Transportation Big Data Application Technology
BookMark eNp9kE1PAjEQhhuDifjxBzw18bw6bZctPRKiaELQCJ6bsm2xpLRru0jw17uIiTcPM3OYd55JnnPUCzEYhK4J3BIAfpcJCDIogB5KACvYCeqTAWcFrwTpoT4Mh4OCl7w8Q-c5rwFADAXto_0Iz8wOT6LXJuBX1bqIn4JJrVMej_wqJte-b_Cu63ixi3ixb0zG0eK58RaPtGpa92nwvDUNnruvbmdjwvPoP11Y4VkM3gWjUses_Ta7GPBLiktvNvkSnVrls7n6nRfo7eF-MX4sps-Tp_FoWtSU07YQTJeMaQBac6u10ZrXCjiQpRA1o7ximtjKVmVlSaVVaVW9rJeWKEqF1RVjF-jmyG1S_Nia3Mp13KbQvZSMAh9SgAHtUvSYqlPMORkrm-Q2Ku0lAXlQLI-KZadY_iiWBzQ7HuUuHFYm_aH_ufoG_iyBpA
Cites_doi 10.1137/S0363012998338806
10.1137/0716071
10.1002/mma.5703
10.1007/s10957-015-0813-x
10.3934/math.20231184
10.1007/s10898-021-01083-2
10.1023/A:1011253113155
10.1016/S0895-7177(00)00199-0
10.1007/s10107-019-01416-w
10.1007/s10915-023-02311-5
10.1007/s11075-015-0007-5
10.1007/s11590-011-0407-y
10.1080/02331934.2023.2187663
10.1016/j.apnum.2023.08.005
10.1016/0041-5553(64)90137-5
10.1007/s10589-019-00156-z
10.1007/s10915-021-01608-7
10.1007/s10957-023-02320-2
10.1007/s11590-015-0960-x
10.1016/j.na.2006.01.013
10.1007/BF01585096
10.1007/978-1-4419-9467-7
10.1007/s40314-019-0955-9
10.1016/0022-247X(79)90234-8
10.1007/s10851-014-0523-2
10.1007/s11075-023-01746-z
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10915-025-02903-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_025_02903_3
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: 11701479; 11701478
– fundername: the Railway Foundation Joint Research Funds of the National Natural Science Foundation of China
  grantid: U2368216
– fundername: the Chinese Postdoctoral Science Foundation
  grantid: 2018M643434
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PHGZM
PHGZT
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~A9
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AHWEU
AIXLP
CITATION
PQGLB
JQ2
ID FETCH-LOGICAL-c272t-93d433d002c7fddedd7ca0701b99c32763d1f6f646f16da4facbcbf1a229fd633
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001478069700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 08:01:00 EST 2025
Sat Nov 29 07:53:10 EST 2025
Sat May 24 01:16:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nonlinear inclusion problem
Golden ratio algorithm
Convergence and convergence rates
Inertial accelerations
Self adaptive step sizes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-93d433d002c7fddedd7ca0701b99c32763d1f6f646f16da4facbcbf1a229fd633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1912-9408
PQID 3207820052
PQPubID 2043771
ParticipantIDs proquest_journals_3207820052
crossref_primary_10_1007_s10915_025_02903_3
springer_journals_10_1007_s10915_025_02903_3
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Y Malitsky (2903_CR7) 2020; 184
S Bartz (2903_CR27) 2007; 66
Y Shehu (2903_CR30) 2019; 38
Z Chbani (2903_CR21) 2013; 7
2903_CR24
C Zhang (2903_CR13) 2023; 8
RI Bot (2903_CR18) 2016; 71
PL Lions (2903_CR3) 1979; 16
2903_CR8
OS Iyiola (2903_CR12) 2023; 194
MO Osilike (2903_CR26) 2000; 32
P Tseng (2903_CR5) 2000; 38
P Cholamjiak (2903_CR32) 2021; 88
F Alvarez (2903_CR16) 2001; 9
ZB Wang (2903_CR23) 2023; 96
BT Polyak (2903_CR15) 1964; 4
2903_CR19
DV Hieu (2903_CR9) 2019; 42
F Facchinei (2903_CR2) 2003
FH Murphy (2903_CR33) 1982; 24
DS Kim (2903_CR28) 2016; 10
C Chen (2903_CR31) 2015; 25
MK Tam (2903_CR11) 2023; 199
GB Passty (2903_CR4) 1979; 72
D Lorenz (2903_CR17) 2015; 51
JM Borwein (2903_CR29) 2016; 171
Y Malitsky (2903_CR6) 2020; 30
OK Oyewole (2903_CR14) 2024; 97
D Kinderlehrer (2903_CR1) 1980
ZB Wang (2903_CR22) 2023; 73
ZB Wang (2903_CR20) 2022; 82
J Yang (2903_CR10) 2020; 75
HH Bauschke (2903_CR25) 2011
References_xml – volume: 38
  start-page: 431
  year: 2000
  ident: 2903_CR5
  publication-title: J. Control Optim.
  doi: 10.1137/S0363012998338806
– volume-title: An Introduction to Variational Inequalities and Their Applications
  year: 1980
  ident: 2903_CR1
– volume: 16
  start-page: 964
  year: 1979
  ident: 2903_CR3
  publication-title: J. Numer. Anal.
  doi: 10.1137/0716071
– volume: 42
  start-page: 6067
  issue: 18
  year: 2019
  ident: 2903_CR9
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5703
– volume: 171
  start-page: 757
  issue: 3
  year: 2016
  ident: 2903_CR29
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0813-x
– volume: 8
  start-page: 23291
  issue: 10
  year: 2023
  ident: 2903_CR13
  publication-title: AIMS Math.
  doi: 10.3934/math.20231184
– volume: 82
  start-page: 499
  year: 2022
  ident: 2903_CR20
  publication-title: Global Optim.
  doi: 10.1007/s10898-021-01083-2
– ident: 2903_CR24
– volume: 9
  start-page: 3
  issue: 1–2
  year: 2001
  ident: 2903_CR16
  publication-title: Set-Valued Anal.
  doi: 10.1023/A:1011253113155
– volume: 32
  start-page: 1181
  year: 2000
  ident: 2903_CR26
  publication-title: Math. Comput. Model.
  doi: 10.1016/S0895-7177(00)00199-0
– volume: 184
  start-page: 383
  issue: 1
  year: 2020
  ident: 2903_CR7
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01416-w
– volume: 96
  start-page: 1
  year: 2023
  ident: 2903_CR23
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-023-02311-5
– volume: 25
  start-page: 2120
  year: 2015
  ident: 2903_CR31
  publication-title: J. Optim.
– volume: 71
  start-page: 519
  issue: 3
  year: 2016
  ident: 2903_CR18
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-015-0007-5
– ident: 2903_CR8
– ident: 2903_CR19
– volume: 7
  start-page: 18
  year: 2013
  ident: 2903_CR21
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-011-0407-y
– volume: 73
  start-page: 2053
  issue: 7
  year: 2023
  ident: 2903_CR22
  publication-title: Optimization
  doi: 10.1080/02331934.2023.2187663
– volume: 194
  start-page: 18
  year: 2023
  ident: 2903_CR12
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2023.08.005
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  ident: 2903_CR15
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 75
  start-page: 423
  year: 2020
  ident: 2903_CR10
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00156-z
– volume: 88
  start-page: 85
  year: 2021
  ident: 2903_CR32
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01608-7
– volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
  year: 2003
  ident: 2903_CR2
– volume: 199
  start-page: 993
  year: 2023
  ident: 2903_CR11
  publication-title: Optim. Theory Appl.
  doi: 10.1007/s10957-023-02320-2
– volume: 10
  start-page: 1669
  issue: 8
  year: 2016
  ident: 2903_CR28
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-015-0960-x
– volume: 66
  start-page: 1198
  issue: 5
  year: 2007
  ident: 2903_CR27
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/j.na.2006.01.013
– volume: 24
  start-page: 92
  issue: 1
  year: 1982
  ident: 2903_CR33
  publication-title: Math. Program.
  doi: 10.1007/BF01585096
– volume: 30
  start-page: 1451
  issue: 2
  year: 2020
  ident: 2903_CR6
  publication-title: J. Optim.
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2011
  ident: 2903_CR25
  doi: 10.1007/978-1-4419-9467-7
– volume: 38
  start-page: 161
  year: 2019
  ident: 2903_CR30
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-019-0955-9
– volume: 72
  start-page: 383
  issue: 2
  year: 1979
  ident: 2903_CR4
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(79)90234-8
– volume: 51
  start-page: 311
  issue: 2
  year: 2015
  ident: 2903_CR17
  publication-title: Math. Imaging Vis.
  doi: 10.1007/s10851-014-0523-2
– volume: 97
  start-page: 1215
  issue: 3
  year: 2024
  ident: 2903_CR14
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-023-01746-z
SSID ssj0009892
Score 2.4023716
Snippet The main purpose of this paper is to extend the golden ratio algorithm for monotone mixed variational inequalities (Math Program 184(1):383–410, 2020) to solve...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 86
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Convergence
Inequalities
Lipschitz condition
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
Title A New Golden Ratio Inertial Algorithm with Two Types of Self Adaptive Step Sizes for Solving Nonlinear Inclusion Problems
URI https://link.springer.com/article/10.1007/s10915-025-02903-3
https://www.proquest.com/docview/3207820052
Volume 103
WOSCitedRecordID wos001478069700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1B4VAOLd22YtsFzYEDCCI1dr58XKEucGBVNQvqLXLsTLtSuqk221bw6zvOJgRQeyiHnGyNLI_neTKeeQPwlihUoSXhmSjKvSAUgacTbTwhrNRam0Tqo6bZRDydJmdn6qQtCqu7bPfuSbJB6j-K3ZTvqondp1xV2FN4xtdd4szxNP3RU-0mTStkNp_QY2c5aEtl7pfx93XU-5j_PIs2t81k-__W-RK2Wu8Sx-vjsANPisUAXnz7Tc1aD2CnteYa37WU0-934ecYGe3wc1UyDOGp0xZ-XbiUayetPK-W89XFJbqgLc5uK3R_rzVWhGlREo6tvnKoiS5lDNP5Lx5jXxjTqnThCpyu6Tj0kmWa8trF5_Bk3cim3oPvk-PZpy9e25TBMyIWK09JG0hpGUhNTIyN1sZGM274uVJGCoYr61NEURCRH1kdkDa5ycnXQiiykZT7sLGoFsUrwFARJRQV7DNqhg6ZO24-TT6x08LbFw_hQ6eb7GrNvZH1LMtulzOeljW7nMkhjDr1Za0d1pkUDSHgUSiG8LFTVz_8sLSDx00_hE3RaNyFZ0awsVpeF6_hublZzevlm-Z83gHbft94
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VqAQcoNBWLK_OoYdWbaSNnZePK8RLhRVit4hb5NiZdqWwQZulVfvrGWcTlqL2UA452RpZHs_nyXjmG4D3RKEKLQnPRFHmBaEIPJ1o4wlhpdbaJFJ362YTcb-fXF-ri6YorGqz3dsnyRqpHxW7Kd9VE7tPuaqwBVgK-MZyiXyXg6s51W5St0Jm8wk9dpaDplTm7zL-vI7mPuaTZ9H6tjlaf946X8Fa411ib3YcNuBFPt6E1fMHatZqEzYaa67wQ0M5_fE1_Oohox0elwXDEF46beHp2KVcO2nFt3Iymn6_QRe0xeHPEt3fa4Ul4SAvCHtW3zrURJcyhoPRbx5jXxgHZeHCFdif0XHoCcs0xZ2Lz-HFrJFN9Qa-Hh0OD068pimDZ0Qspp6SNpDSMpCamBgbrY2NZtzwM6WMFAxX1qeIoiAiP7I6IG0yk5GvhVBkIynfwuK4HOdbgKEiSijK2WfUDB0yc9x8mnxip4W3L-7Ap1Y36e2MeyOdsyy7XU55Wlrvcio7sNuqL23ssEqlqAkBu6HowOdWXfPhf0vb_r_p72D5ZHh-lp6d9r_swIqote9CNbuwOJ3c5Xvw0vyYjqrJfn1W7wFduOJc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BqRAcCi0glhaYQw-tStTGzpePK2ChAlarbql6ixw7AyuFZLVJQfTX15NkuwXBAXHIydYo8niex-OZNwC7RKEKLQnPRFHmBaEIPJ1o4wlhpdbaJFIftc0m4vE4OT9XkxtV_G22-_JJsqtpYJamsjmcWzq8UfimfK4s5k9xhdhtuBNw0yC-r0_PVrS7SdsW2ZlS6DnHOejLZv4s49ejaeVv_vZE2p48owf__88PYaP3OnHYbZNNuJWXW3D_0zVla70Fm72V17jXU1HvP4KfQ3QoiO-qwsETnrAW8bjkVGyWVnypFrPm6zfkYC6e_qiQb7U1VoTTvCAcWj1nNEVOJcPp7NKNOR8Zp1XBYQwcdzQdeuFkmuKC43Y46Rrc1I_h8-jt6ev3Xt-swTMiFo2npA2ktA5gTUwOM62NjXZ44mdKGSkcjFmfIoqCiPzI6oC0yUxGvhZCkY2kfAJrZVXmTwFDRZRQlDtfUjtIkRlz9mnyyTkzbvniARws9ZTOO06OdMW-zKucumlpu8qpHMDOUpVpb591KkVLFHgUigG8WqpuNfx3ac_-bfpLuDt5M0o_Ho8_bMM90SqfIzg7sNYsLvLnsG6-N7N68aLdtlcA1utA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Golden+Ratio+Inertial+Algorithm+with+Two+Types+of+Self+Adaptive+Step+Sizes+for+Solving+Nonlinear+Inclusion+Problems&rft.jtitle=Journal+of+scientific+computing&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=103&rft.issue=3&rft.spage=86&rft_id=info:doi/10.1007%2Fs10915-025-02903-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon