A New Golden Ratio Inertial Algorithm with Two Types of Self Adaptive Step Sizes for Solving Nonlinear Inclusion Problems
The main purpose of this paper is to extend the golden ratio algorithm for monotone mixed variational inequalities (Math Program 184(1):383–410, 2020) to solve a nonlinear inclusion problem that involves non-monotone and locally Lipschitz continuous operators. We show that the developed iterative se...
Uloženo v:
| Vydáno v: | Journal of scientific computing Ročník 103; číslo 3; s. 86 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.06.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The main purpose of this paper is to extend the golden ratio algorithm for monotone mixed variational inequalities (Math Program 184(1):383–410, 2020) to solve a nonlinear inclusion problem that involves non-monotone and locally Lipschitz continuous operators. We show that the developed iterative sequence converges towards some solution of the nonlinear inclusion problem. Furthermore, our analysis reveals our algorithm owns the
O
(
1
k
)
convergence rate and the linear convergence rate. In addition to inheriting all the benefits of the golden ratio algorithm from (Math Program 184(1):383–410, 2020), our algorithm has inertial accelerations and two types of self adaptive step sizes, when applied to monotone mixed variational inequalities. |
|---|---|
| AbstractList | The main purpose of this paper is to extend the golden ratio algorithm for monotone mixed variational inequalities (Math Program 184(1):383–410, 2020) to solve a nonlinear inclusion problem that involves non-monotone and locally Lipschitz continuous operators. We show that the developed iterative sequence converges towards some solution of the nonlinear inclusion problem. Furthermore, our analysis reveals our algorithm owns the O(1k) convergence rate and the linear convergence rate. In addition to inheriting all the benefits of the golden ratio algorithm from (Math Program 184(1):383–410, 2020), our algorithm has inertial accelerations and two types of self adaptive step sizes, when applied to monotone mixed variational inequalities. The main purpose of this paper is to extend the golden ratio algorithm for monotone mixed variational inequalities (Math Program 184(1):383–410, 2020) to solve a nonlinear inclusion problem that involves non-monotone and locally Lipschitz continuous operators. We show that the developed iterative sequence converges towards some solution of the nonlinear inclusion problem. Furthermore, our analysis reveals our algorithm owns the O ( 1 k ) convergence rate and the linear convergence rate. In addition to inheriting all the benefits of the golden ratio algorithm from (Math Program 184(1):383–410, 2020), our algorithm has inertial accelerations and two types of self adaptive step sizes, when applied to monotone mixed variational inequalities. |
| ArticleNumber | 86 |
| Author | Chen, Zhang-you Wang, Zhong-bao Chen, Xing-yu |
| Author_xml | – sequence: 1 givenname: Zhong-bao orcidid: 0000-0002-1912-9408 surname: Wang fullname: Wang, Zhong-bao email: zhongbaowang@hotmail.com organization: Department of Mathematics, Southwest Jiaotong University, National Engineering Laboratory of Integrated Transportation Big Data Application Technology – sequence: 2 givenname: Xing-yu surname: Chen fullname: Chen, Xing-yu organization: Department of Mathematics, Southwest Jiaotong University – sequence: 3 givenname: Zhang-you surname: Chen fullname: Chen, Zhang-you organization: Department of Mathematics, Southwest Jiaotong University, National Engineering Laboratory of Integrated Transportation Big Data Application Technology |
| BookMark | eNp9kE1PAjEQhhuDifjxBzw18bw6bZctPRKiaELQCJ6bsm2xpLRru0jw17uIiTcPM3OYd55JnnPUCzEYhK4J3BIAfpcJCDIogB5KACvYCeqTAWcFrwTpoT4Mh4OCl7w8Q-c5rwFADAXto_0Iz8wOT6LXJuBX1bqIn4JJrVMej_wqJte-b_Cu63ixi3ixb0zG0eK58RaPtGpa92nwvDUNnruvbmdjwvPoP11Y4VkM3gWjUses_Ta7GPBLiktvNvkSnVrls7n6nRfo7eF-MX4sps-Tp_FoWtSU07YQTJeMaQBac6u10ZrXCjiQpRA1o7ximtjKVmVlSaVVaVW9rJeWKEqF1RVjF-jmyG1S_Nia3Mp13KbQvZSMAh9SgAHtUvSYqlPMORkrm-Q2Ku0lAXlQLI-KZadY_iiWBzQ7HuUuHFYm_aH_ufoG_iyBpA |
| Cites_doi | 10.1137/S0363012998338806 10.1137/0716071 10.1002/mma.5703 10.1007/s10957-015-0813-x 10.3934/math.20231184 10.1007/s10898-021-01083-2 10.1023/A:1011253113155 10.1016/S0895-7177(00)00199-0 10.1007/s10107-019-01416-w 10.1007/s10915-023-02311-5 10.1007/s11075-015-0007-5 10.1007/s11590-011-0407-y 10.1080/02331934.2023.2187663 10.1016/j.apnum.2023.08.005 10.1016/0041-5553(64)90137-5 10.1007/s10589-019-00156-z 10.1007/s10915-021-01608-7 10.1007/s10957-023-02320-2 10.1007/s11590-015-0960-x 10.1016/j.na.2006.01.013 10.1007/BF01585096 10.1007/978-1-4419-9467-7 10.1007/s40314-019-0955-9 10.1016/0022-247X(79)90234-8 10.1007/s10851-014-0523-2 10.1007/s11075-023-01746-z |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10915-025-02903-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| ExternalDocumentID | 10_1007_s10915_025_02903_3 |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: 11701479; 11701478 – fundername: the Railway Foundation Joint Research Funds of the National Natural Science Foundation of China grantid: U2368216 – fundername: the Chinese Postdoctoral Science Foundation grantid: 2018M643434 |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFFNX AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PHGZM PHGZT PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ZWQNP ~A9 ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AHWEU AIXLP CITATION PQGLB JQ2 |
| ID | FETCH-LOGICAL-c272t-93d433d002c7fddedd7ca0701b99c32763d1f6f646f16da4facbcbf1a229fd633 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001478069700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 08:01:00 EST 2025 Sat Nov 29 07:53:10 EST 2025 Sat May 24 01:16:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Nonlinear inclusion problem Golden ratio algorithm Convergence and convergence rates Inertial accelerations Self adaptive step sizes |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-93d433d002c7fddedd7ca0701b99c32763d1f6f646f16da4facbcbf1a229fd633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1912-9408 |
| PQID | 3207820052 |
| PQPubID | 2043771 |
| ParticipantIDs | proquest_journals_3207820052 crossref_primary_10_1007_s10915_025_02903_3 springer_journals_10_1007_s10915_025_02903_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Y Malitsky (2903_CR7) 2020; 184 S Bartz (2903_CR27) 2007; 66 Y Shehu (2903_CR30) 2019; 38 Z Chbani (2903_CR21) 2013; 7 2903_CR24 C Zhang (2903_CR13) 2023; 8 RI Bot (2903_CR18) 2016; 71 PL Lions (2903_CR3) 1979; 16 2903_CR8 OS Iyiola (2903_CR12) 2023; 194 MO Osilike (2903_CR26) 2000; 32 P Tseng (2903_CR5) 2000; 38 P Cholamjiak (2903_CR32) 2021; 88 F Alvarez (2903_CR16) 2001; 9 ZB Wang (2903_CR23) 2023; 96 BT Polyak (2903_CR15) 1964; 4 2903_CR19 DV Hieu (2903_CR9) 2019; 42 F Facchinei (2903_CR2) 2003 FH Murphy (2903_CR33) 1982; 24 DS Kim (2903_CR28) 2016; 10 C Chen (2903_CR31) 2015; 25 MK Tam (2903_CR11) 2023; 199 GB Passty (2903_CR4) 1979; 72 D Lorenz (2903_CR17) 2015; 51 JM Borwein (2903_CR29) 2016; 171 Y Malitsky (2903_CR6) 2020; 30 OK Oyewole (2903_CR14) 2024; 97 D Kinderlehrer (2903_CR1) 1980 ZB Wang (2903_CR22) 2023; 73 ZB Wang (2903_CR20) 2022; 82 J Yang (2903_CR10) 2020; 75 HH Bauschke (2903_CR25) 2011 |
| References_xml | – volume: 38 start-page: 431 year: 2000 ident: 2903_CR5 publication-title: J. Control Optim. doi: 10.1137/S0363012998338806 – volume-title: An Introduction to Variational Inequalities and Their Applications year: 1980 ident: 2903_CR1 – volume: 16 start-page: 964 year: 1979 ident: 2903_CR3 publication-title: J. Numer. Anal. doi: 10.1137/0716071 – volume: 42 start-page: 6067 issue: 18 year: 2019 ident: 2903_CR9 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5703 – volume: 171 start-page: 757 issue: 3 year: 2016 ident: 2903_CR29 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0813-x – volume: 8 start-page: 23291 issue: 10 year: 2023 ident: 2903_CR13 publication-title: AIMS Math. doi: 10.3934/math.20231184 – volume: 82 start-page: 499 year: 2022 ident: 2903_CR20 publication-title: Global Optim. doi: 10.1007/s10898-021-01083-2 – ident: 2903_CR24 – volume: 9 start-page: 3 issue: 1–2 year: 2001 ident: 2903_CR16 publication-title: Set-Valued Anal. doi: 10.1023/A:1011253113155 – volume: 32 start-page: 1181 year: 2000 ident: 2903_CR26 publication-title: Math. Comput. Model. doi: 10.1016/S0895-7177(00)00199-0 – volume: 184 start-page: 383 issue: 1 year: 2020 ident: 2903_CR7 publication-title: Math. Program. doi: 10.1007/s10107-019-01416-w – volume: 96 start-page: 1 year: 2023 ident: 2903_CR23 publication-title: J. Sci. Comput. doi: 10.1007/s10915-023-02311-5 – volume: 25 start-page: 2120 year: 2015 ident: 2903_CR31 publication-title: J. Optim. – volume: 71 start-page: 519 issue: 3 year: 2016 ident: 2903_CR18 publication-title: Numer. Algorithms doi: 10.1007/s11075-015-0007-5 – ident: 2903_CR8 – ident: 2903_CR19 – volume: 7 start-page: 18 year: 2013 ident: 2903_CR21 publication-title: Optim. Lett. doi: 10.1007/s11590-011-0407-y – volume: 73 start-page: 2053 issue: 7 year: 2023 ident: 2903_CR22 publication-title: Optimization doi: 10.1080/02331934.2023.2187663 – volume: 194 start-page: 18 year: 2023 ident: 2903_CR12 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2023.08.005 – volume: 4 start-page: 1 issue: 5 year: 1964 ident: 2903_CR15 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – volume: 75 start-page: 423 year: 2020 ident: 2903_CR10 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-019-00156-z – volume: 88 start-page: 85 year: 2021 ident: 2903_CR32 publication-title: J. Sci. Comput. doi: 10.1007/s10915-021-01608-7 – volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems year: 2003 ident: 2903_CR2 – volume: 199 start-page: 993 year: 2023 ident: 2903_CR11 publication-title: Optim. Theory Appl. doi: 10.1007/s10957-023-02320-2 – volume: 10 start-page: 1669 issue: 8 year: 2016 ident: 2903_CR28 publication-title: Optim. Lett. doi: 10.1007/s11590-015-0960-x – volume: 66 start-page: 1198 issue: 5 year: 2007 ident: 2903_CR27 publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/j.na.2006.01.013 – volume: 24 start-page: 92 issue: 1 year: 1982 ident: 2903_CR33 publication-title: Math. Program. doi: 10.1007/BF01585096 – volume: 30 start-page: 1451 issue: 2 year: 2020 ident: 2903_CR6 publication-title: J. Optim. – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2011 ident: 2903_CR25 doi: 10.1007/978-1-4419-9467-7 – volume: 38 start-page: 161 year: 2019 ident: 2903_CR30 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-019-0955-9 – volume: 72 start-page: 383 issue: 2 year: 1979 ident: 2903_CR4 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(79)90234-8 – volume: 51 start-page: 311 issue: 2 year: 2015 ident: 2903_CR17 publication-title: Math. Imaging Vis. doi: 10.1007/s10851-014-0523-2 – volume: 97 start-page: 1215 issue: 3 year: 2024 ident: 2903_CR14 publication-title: Numer. Algorithms doi: 10.1007/s11075-023-01746-z |
| SSID | ssj0009892 |
| Score | 2.4023716 |
| Snippet | The main purpose of this paper is to extend the golden ratio algorithm for monotone mixed variational inequalities (Math Program 184(1):383–410, 2020) to solve... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 86 |
| SubjectTerms | Algorithms Computational Mathematics and Numerical Analysis Convergence Inequalities Lipschitz condition Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Theoretical |
| Title | A New Golden Ratio Inertial Algorithm with Two Types of Self Adaptive Step Sizes for Solving Nonlinear Inclusion Problems |
| URI | https://link.springer.com/article/10.1007/s10915-025-02903-3 https://www.proquest.com/docview/3207820052 |
| Volume | 103 |
| WOSCitedRecordID | wos001478069700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1B4VAOLd22YtsFzYEDCCI1dr58XKEucGBVNQvqLXLsTLtSuqk221bw6zvOJgRQeyiHnGyNLI_neTKeeQPwlihUoSXhmSjKvSAUgacTbTwhrNRam0Tqo6bZRDydJmdn6qQtCqu7bPfuSbJB6j-K3ZTvqondp1xV2FN4xtdd4szxNP3RU-0mTStkNp_QY2c5aEtl7pfx93XU-5j_PIs2t81k-__W-RK2Wu8Sx-vjsANPisUAXnz7Tc1aD2CnteYa37WU0-934ecYGe3wc1UyDOGp0xZ-XbiUayetPK-W89XFJbqgLc5uK3R_rzVWhGlREo6tvnKoiS5lDNP5Lx5jXxjTqnThCpyu6Tj0kmWa8trF5_Bk3cim3oPvk-PZpy9e25TBMyIWK09JG0hpGUhNTIyN1sZGM274uVJGCoYr61NEURCRH1kdkDa5ycnXQiiykZT7sLGoFsUrwFARJRQV7DNqhg6ZO24-TT6x08LbFw_hQ6eb7GrNvZH1LMtulzOeljW7nMkhjDr1Za0d1pkUDSHgUSiG8LFTVz_8sLSDx00_hE3RaNyFZ0awsVpeF6_hublZzevlm-Z83gHbft94 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VqAQcoNBWLK_OoYdWbaSNnZePK8RLhRVit4hb5NiZdqWwQZulVfvrGWcTlqL2UA452RpZHs_nyXjmG4D3RKEKLQnPRFHmBaEIPJ1o4wlhpdbaJFJ362YTcb-fXF-ri6YorGqz3dsnyRqpHxW7Kd9VE7tPuaqwBVgK-MZyiXyXg6s51W5St0Jm8wk9dpaDplTm7zL-vI7mPuaTZ9H6tjlaf946X8Fa411ib3YcNuBFPt6E1fMHatZqEzYaa67wQ0M5_fE1_Oohox0elwXDEF46beHp2KVcO2nFt3Iymn6_QRe0xeHPEt3fa4Ul4SAvCHtW3zrURJcyhoPRbx5jXxgHZeHCFdif0XHoCcs0xZ2Lz-HFrJFN9Qa-Hh0OD068pimDZ0Qspp6SNpDSMpCamBgbrY2NZtzwM6WMFAxX1qeIoiAiP7I6IG0yk5GvhVBkIynfwuK4HOdbgKEiSijK2WfUDB0yc9x8mnxip4W3L-7Ap1Y36e2MeyOdsyy7XU55Wlrvcio7sNuqL23ssEqlqAkBu6HowOdWXfPhf0vb_r_p72D5ZHh-lp6d9r_swIqote9CNbuwOJ3c5Xvw0vyYjqrJfn1W7wFduOJc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BqRAcCi0glhaYQw-tStTGzpePK2ChAlarbql6ixw7AyuFZLVJQfTX15NkuwXBAXHIydYo8niex-OZNwC7RKEKLQnPRFHmBaEIPJ1o4wlhpdbaJFIftc0m4vE4OT9XkxtV_G22-_JJsqtpYJamsjmcWzq8UfimfK4s5k9xhdhtuBNw0yC-r0_PVrS7SdsW2ZlS6DnHOejLZv4s49ejaeVv_vZE2p48owf__88PYaP3OnHYbZNNuJWXW3D_0zVla70Fm72V17jXU1HvP4KfQ3QoiO-qwsETnrAW8bjkVGyWVnypFrPm6zfkYC6e_qiQb7U1VoTTvCAcWj1nNEVOJcPp7NKNOR8Zp1XBYQwcdzQdeuFkmuKC43Y46Rrc1I_h8-jt6ev3Xt-swTMiFo2npA2ktA5gTUwOM62NjXZ44mdKGSkcjFmfIoqCiPzI6oC0yUxGvhZCkY2kfAJrZVXmTwFDRZRQlDtfUjtIkRlz9mnyyTkzbvniARws9ZTOO06OdMW-zKucumlpu8qpHMDOUpVpb591KkVLFHgUigG8WqpuNfx3ac_-bfpLuDt5M0o_Ho8_bMM90SqfIzg7sNYsLvLnsG6-N7N68aLdtlcA1utA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Golden+Ratio+Inertial+Algorithm+with+Two+Types+of+Self+Adaptive+Step+Sizes+for+Solving+Nonlinear+Inclusion+Problems&rft.jtitle=Journal+of+scientific+computing&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=103&rft.issue=3&rft.spage=86&rft_id=info:doi/10.1007%2Fs10915-025-02903-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |