On the clique covering numbers of Johnson graphs On the clique covering numbers of Johnson graphs

We initiate a study of the vertex clique covering numbers of Johnson graphs J ( N ,  k ), the smallest numbers of cliques necessary to cover the vertices of those graphs. We prove identities for the values of these numbers when k ≤ 3 , and k ≥ N - 3 , and using computational methods, we provide expl...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Designs, codes, and cryptography Ročník 93; číslo 9; s. 3689 - 3705
Hlavný autor: Jørgensen, Søren Fuglede
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2025
Springer Nature B.V
Predmet:
ISSN:0925-1022, 1573-7586
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We initiate a study of the vertex clique covering numbers of Johnson graphs J ( N ,  k ), the smallest numbers of cliques necessary to cover the vertices of those graphs. We prove identities for the values of these numbers when k ≤ 3 , and k ≥ N - 3 , and using computational methods, we provide explicit values for a range of small graphs. By drawing on connections to coding theory and combinatorial design theory, we prove various bounds on the clique covering numbers for general Johnson graphs, and we show how constant-weight lexicodes can be utilized to create optimal covers of J (2 k ,  k ) when k is a small power of two.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-025-01663-3