An upper bound for a ramsey type problem for k-connected subgraphs

For any positive integer k , let r 2 ( k ) denote the smallest integer n such that every 2-edge-colored complete graph K n contains a monochromatic k -connected subgraph. Matula established the bound 4 ( k - 1 ) + 1 ≤ r 2 ( k ) < ( 3 + 11 / 3 ) ( k - 1 ) + 1 . It is known that r 2 ( k ) = 4 ( k -...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Graphs and combinatorics Ročník 41; číslo 6; s. 128
Hlavní autoři: Chen, Murong, Xie, Qiqin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tokyo Springer Japan 01.12.2025
Springer Nature B.V
Témata:
ISSN:0911-0119, 1435-5914
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For any positive integer k , let r 2 ( k ) denote the smallest integer n such that every 2-edge-colored complete graph K n contains a monochromatic k -connected subgraph. Matula established the bound 4 ( k - 1 ) + 1 ≤ r 2 ( k ) < ( 3 + 11 / 3 ) ( k - 1 ) + 1 . It is known that r 2 ( k ) = 4 ( k - 1 ) + 1 f o r k = 1 , 2 (by Bollobás and Gyárfás) and for k = 3 (by Liu, Morris, and Prince). We prove that for k ≥ 2 and n > ( 3 + 497 - 1 16 ) ( k - 1 ) , every 2-edge-colored K n contains a monochromatic k -connected subgraph with at least 2 ( k - 1 ) vertices. This result improves the upper bound of r 2 ( k ) to ⌈ ( 3 + 497 - 1 16 ) ( k - 1 ) ⌉ for all k ≥ 4 .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-025-02993-8