Vibration modelling with optimized complex boundary in full-scale elastic theory for large end-winding

This study presents a high-fidelity modelling and vibration analysis framework for a 600 MW turbo-generator stator end winding, integrating composite materials theory and discrete element methods. The double-layered winding is modelled as a conical shell model with ring and stringer stiffeners repre...

Full description

Saved in:
Bibliographic Details
Published in:Archive of applied mechanics (1991) Vol. 95; no. 12; p. 274
Main Authors: Wang, Ting, Qin, Qiyong, Zhao, Yang, Fan, Ye, Deng, Congying, Lu, Sheng
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2025
Springer Nature B.V
Subjects:
ISSN:0939-1533, 1432-0681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a high-fidelity modelling and vibration analysis framework for a 600 MW turbo-generator stator end winding, integrating composite materials theory and discrete element methods. The double-layered winding is modelled as a conical shell model with ring and stringer stiffeners representing supporting components. Natural and forced vibration equations are derived using the Rayleigh–Ritz method with an enhanced Fourier series, enabling accurate simulation of complex elastic boundary conditions. The model is extended to optimize the stator-winding characteristic equation, yielding a semi-analytical solution for spring stiffness configuration. Key innovations include the analytical derivation of modal parameters, a rigorously formulated frequency response function, and the introduction of Rayleigh damping and excitation force potential energy. Multidimensional displacement response analysis demonstrates strong agreement with finite element results, validating the proposed equivalent digital mechanism model’s accuracy and robustness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0939-1533
1432-0681
DOI:10.1007/s00419-025-02977-3