A decomposition-based multi-objective evolutionary algorithm with reinforcement learning for workflow scheduling in cloud computing environment

Cloud computing has become an integral part of modern computer science. Cloud service providers (CSPs) often have multiple conflicting objectives for different user requirements. Thus, workflow scheduling in cloud computing environment is a challenge multi-objective optimization problem (MOP). The m...

Full description

Saved in:
Bibliographic Details
Published in:Cluster computing Vol. 28; no. 10; p. 678
Main Authors: Xue, Fei, Wen, Jinbu, Wang, Peiwen, Fan, Wenyu, Geng, Yuge, Dong, Tingting
Format: Journal Article
Language:English
Published: New York Springer US 01.10.2025
Springer Nature B.V
Subjects:
ISSN:1386-7857, 1573-7543
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cloud computing has become an integral part of modern computer science. Cloud service providers (CSPs) often have multiple conflicting objectives for different user requirements. Thus, workflow scheduling in cloud computing environment is a challenge multi-objective optimization problem (MOP). The multi-objective evolutionary algorithm (MOEA) is one of the most commonly used approachs, but it is sensitive to parameter settings and exsists the problems of early convergence and local optimum. To improve the convergence speed and optimality of the solution, the augmented Tchebychef (ATCH) as the objective decomposition method is adopted in the MOEA based on decomposition (MOEA/D). For the problem with sensitive parameter settings, Q-learning in reinforcement learning (RL) is designed to select the optional parameter adaptively in the ATCH method. This paper proposed a decomposition-based MOEA with Q-learning (QLMOEA/D) to solve the multi-objective workflow scheduling problem while taking into account the task completion time (makespan), cost and load. Experimental results demonstrate that the proposed QLMOEA/D achieves better convergence and diversity on both benchmark functions (ZDT and DTLZ) and real-world scientific workflows (SWFs). It obtains the best performance in 55.56% of all test cases and outperforms baseline algorithms in 94.44% of scenarios across makespan, cost, and load objectives.
AbstractList Cloud computing has become an integral part of modern computer science. Cloud service providers (CSPs) often have multiple conflicting objectives for different user requirements. Thus, workflow scheduling in cloud computing environment is a challenge multi-objective optimization problem (MOP). The multi-objective evolutionary algorithm (MOEA) is one of the most commonly used approachs, but it is sensitive to parameter settings and exsists the problems of early convergence and local optimum. To improve the convergence speed and optimality of the solution, the augmented Tchebychef (ATCH) as the objective decomposition method is adopted in the MOEA based on decomposition (MOEA/D). For the problem with sensitive parameter settings, Q-learning in reinforcement learning (RL) is designed to select the optional parameter adaptively in the ATCH method. This paper proposed a decomposition-based MOEA with Q-learning (QLMOEA/D) to solve the multi-objective workflow scheduling problem while taking into account the task completion time (makespan), cost and load. Experimental results demonstrate that the proposed QLMOEA/D achieves better convergence and diversity on both benchmark functions (ZDT and DTLZ) and real-world scientific workflows (SWFs). It obtains the best performance in 55.56% of all test cases and outperforms baseline algorithms in 94.44% of scenarios across makespan, cost, and load objectives.
ArticleNumber 678
Author Wen, Jinbu
Dong, Tingting
Xue, Fei
Geng, Yuge
Wang, Peiwen
Fan, Wenyu
Author_xml – sequence: 1
  givenname: Fei
  surname: Xue
  fullname: Xue, Fei
  organization: School of Information, Beijing Wuzi University
– sequence: 2
  givenname: Jinbu
  surname: Wen
  fullname: Wen, Jinbu
  organization: School of Information, Beijing Wuzi University
– sequence: 3
  givenname: Peiwen
  surname: Wang
  fullname: Wang, Peiwen
  organization: School of Information, Beijing Wuzi University
– sequence: 4
  givenname: Wenyu
  surname: Fan
  fullname: Fan, Wenyu
  organization: School of Information, Beijing Wuzi University
– sequence: 5
  givenname: Yuge
  surname: Geng
  fullname: Geng, Yuge
  organization: School of Information, Beijing Wuzi University
– sequence: 6
  givenname: Tingting
  surname: Dong
  fullname: Dong, Tingting
  email: dongtingting@bwu.edu.cn
  organization: School of Information, Beijing Wuzi University
BookMark eNp9kM1OxCAUhYnRxN8XcEXiGqXQlrI0xr_ExI2uSQuXGcYWRmhnMk_hK0sdE3du4Obcc85NvlN06IMHhC4Lel1QKm5SQaumJpRVhFa8lmR3gE6KSnAiqpIf5pnntWgqcYxOU1pRSqVg8gR93WIDOgzrkNzogiddm8DgYepHR0K3Aj26DWDYhH6a923c4bZfhOjG5YC3-cURnLchahjAj7iHNnrnFzhLeBvih-3DFie9BDP1s-481n2YDJ6v5s4sgd-4GPycP0dHtu0TXPz-Z-j94f7t7om8vD4-392-EM0EG0kjpdUNN4bxklvetSBlA11TgZathRqoLa2wVafzoBumu1q3pjSdNYYXTPIzdLXvXcfwOUEa1SpM0eeTirOyZlzwgmcX27t0DClFsGod3ZAZqIKqGbzag1cZvPoBr3Y5xPehlM1-AfGv-p_UNz4Wj0Q
Cites_doi 10.1109/TCYB.2016.2550502
10.1016/j.cie.2020.106649
10.1016/j.simpat.2018.10.004
10.1109/TEVC.2008.925798
10.1007/s10586-020-03205-z
10.1016/j.cor.2012.02.021
10.1109/ESCIW.2009.5408002
10.1016/j.future.2019.02.019
10.1109/TEVC.2015.2443001
10.1016/j.eswa.2022.119025
10.1162/106365600568202
10.1109/TEVC.2017.2704118
10.1016/j.ejor.2020.11.016
10.1016/j.applthermaleng.2018.10.020
10.1109/CEC.2002.1007015
10.1016/j.asoc.2020.106895
10.1016/j.cie.2020.106778
10.1016/j.egyr.2023.01.052
10.1016/S0377-2217(97)00420-7
10.1109/TEVC.2014.2373386
10.1109/MCI.2017.2742868
10.1016/j.ins.2022.07.174
10.1016/j.swevo.2023.101236
10.1007/1-84628-137-7_6
10.1016/j.ins.2022.05.053
10.1145/3321707.3321831
10.1016/j.eswa.2015.07.051
10.1016/j.eswa.2017.09.051
10.1016/j.jocs.2021.101545
10.1080/0951192X.2016.1187301
10.1016/j.cad.2010.12.015
10.1109/ICRA40945.2020.9197314
10.1016/j.knosys.2021.106959
10.1016/j.future.2018.09.014
10.1109/ACCESS.2019.2939294
10.1007/s10710-005-6164-x
10.1016/j.ins.2021.11.027
10.1016/j.ins.2022.10.099
10.1109/CEC.2000.870296
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10586-025-05369-y
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
ExternalDocumentID 10_1007_s10586_025_05369_y
GrantInformation_xml – fundername: Beijing Wuzi University
  grantid: 2024XJKY27; 2024XJKY27
  funderid: https://doi.org/10.13039/501100015256
– fundername: Beijing Municipal Education Commission
  grantid: KZ202210037046
  funderid: https://doi.org/10.13039/501100003213
– fundername: Beijing Municipal Education Commission of China
  grantid: KM202410037005; KM202410037005
– fundername: National Social Science Project
  grantid: 21FGLB046
– fundername: National Natural Science Foundation of China
  grantid: 72101033
  funderid: https://doi.org/10.13039/501100001809
– fundername: Beijing Social Science Fund
  grantid: 20GLB026
  funderid: https://doi.org/10.13039/501100009625
– fundername: School level Youth Research Fund Project
  grantid: 2024XJQN22; 2024XJQN22
– fundername: the Outstanding Young Science and Technology Worker of Science and Technology Projects
  grantid: JCQN2024007; JCQN2024007
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29B
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AAIAL
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AHSBF
AJBLW
ARAPS
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HZ~
IHE
K7-
N2Q
O9-
OVD
PHGZM
PHGZT
PQGLB
RNI
RZC
RZE
RZK
TEORI
JQ2
ID FETCH-LOGICAL-c272t-899fc83dd2343f3bae998eb85ec9afe6e0f4f7f5bc0f4c82cb6cad4dbfdd31293
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001563368800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-7857
IngestDate Wed Nov 26 13:51:43 EST 2025
Sat Nov 29 07:25:40 EST 2025
Tue Oct 07 10:56:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Cloud computing
MOEA
Workflow scheduling
Reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-899fc83dd2343f3bae998eb85ec9afe6e0f4f7f5bc0f4c82cb6cad4dbfdd31293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3246237313
PQPubID 2043865
ParticipantIDs proquest_journals_3246237313
crossref_primary_10_1007_s10586_025_05369_y
springer_journals_10_1007_s10586_025_05369_y
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References C Coello (5369_CR9) 2005; 6
Z Zhang (5369_CR42) 2022; 583
H Li (5369_CR19) 2008; 13
I-D Psychas (5369_CR26) 2015; 42
R Chen (5369_CR6) 2020; 149
V Ho-Huu (5369_CR16) 2018; 92
F Abazari (5369_CR1) 2019; 93
X Ma (5369_CR23) 2017; 22
Y Zhu (5369_CR44) 2023; 213
RV Rao (5369_CR27) 2016; 7
K Li (5369_CR20) 2014; 19
RV Rao (5369_CR29) 2011; 43
Q Dang (5369_CR11) 2023; 213
M-L Chiang (5369_CR8) 2023; 212
X Gao (5369_CR15) 2022; 2258
L Chen (5369_CR7) 2022; 58
Y Tian (5369_CR35) 2017; 12
E Zitzler (5369_CR45) 2000; 8
TC Bora (5369_CR5) 2019; 146
Y Gao (5369_CR14) 2019; 7
Y Zeng (5369_CR41) 2020; 1646
AS Oliver (5369_CR25) 2023; 9
M Alaei (5369_CR2) 2021; 99
Y Yuan (5369_CR40) 2015; 20
GA de Morais (5369_CR13) 2022; 15
AR Arunarani (5369_CR3) 2019; 91
A Mohammadzadeh (5369_CR24) 2021; 24
H Wang (5369_CR36) 2016; 47
Y Li (5369_CR22) 2023; 630
M Kolonko (5369_CR18) 1999; 113
RV Rao (5369_CR28) 2020; 11
GL Stavrinides (5369_CR33) 2019; 96
F Zhao (5369_CR43) 2017; 30
W Hu (5369_CR17) 2023; 217
5369_CR54
5369_CR55
5369_CR52
5369_CR53
Z Shao (5369_CR32) 2021; 221
5369_CR50
5369_CR51
W Li (5369_CR21) 2023; 78
5369_CR49
X Xia (5369_CR38) 2022; 606
5369_CR47
5369_CR48
Q Wang (5369_CR37) 2022; 65
K Dächert (5369_CR10) 2012; 39
JF Robles (5369_CR30) 2020; 1
K-C Ying (5369_CR39) 2022; 169
Q Dang (5369_CR12) 2022; 612
K Sun (5369_CR34) 2023; 215
5369_CR46
C Audet (5369_CR4) 2021; 292
S Saeedi (5369_CR31) 2020; 147
References_xml – volume: 47
  start-page: 1510
  issue: 6
  year: 2016
  ident: 5369_CR36
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2550502
– volume: 78
  year: 2023
  ident: 5369_CR21
  publication-title: Swarm Evol. Comput.
– volume: 215
  year: 2023
  ident: 5369_CR34
  publication-title: Expert Syst. Appl.
– volume: 15
  issue: 192
  year: 2022
  ident: 5369_CR13
  publication-title: Expert Syst. Appl.
– volume: 147
  start-page: 106649
  year: 2020
  ident: 5369_CR31
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106649
– volume: 65
  year: 2022
  ident: 5369_CR37
  publication-title: J. Comput. Sci.
– volume: 93
  start-page: 119
  year: 2019
  ident: 5369_CR1
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2018.10.004
– volume: 13
  start-page: 284
  issue: 2
  year: 2008
  ident: 5369_CR19
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– volume: 24
  start-page: 1479
  year: 2021
  ident: 5369_CR24
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-020-03205-z
– volume: 1
  issue: 147
  year: 2020
  ident: 5369_CR30
  publication-title: Expert Syst. Appl.
– volume: 39
  start-page: 2929
  issue: 12
  year: 2012
  ident: 5369_CR10
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.02.021
– ident: 5369_CR53
  doi: 10.1109/ESCIW.2009.5408002
– volume: 96
  start-page: 216
  year: 2019
  ident: 5369_CR33
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.019
– volume: 20
  start-page: 180
  issue: 2
  year: 2015
  ident: 5369_CR40
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2443001
– volume: 213
  year: 2023
  ident: 5369_CR11
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119025
– volume: 2258
  issue: 1
  year: 2022
  ident: 5369_CR15
  publication-title: J. Phys.
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 5369_CR45
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– volume: 169
  year: 2022
  ident: 5369_CR39
  publication-title: Comput. Ind. Eng.
– ident: 5369_CR55
– volume: 22
  start-page: 226
  issue: 2
  year: 2017
  ident: 5369_CR23
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2704118
– volume: 292
  start-page: 397
  issue: 2
  year: 2021
  ident: 5369_CR4
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2020.11.016
– volume: 212
  year: 2023
  ident: 5369_CR8
  publication-title: Expert Syst. Appl.
– volume: 213
  year: 2023
  ident: 5369_CR44
  publication-title: Expert Syst. Appl.
– volume: 146
  start-page: 688
  year: 2019
  ident: 5369_CR5
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.10.020
– ident: 5369_CR51
  doi: 10.1109/CEC.2002.1007015
– volume: 99
  year: 2021
  ident: 5369_CR2
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106895
– volume: 149
  year: 2020
  ident: 5369_CR6
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106778
– volume: 9
  start-page: 2494
  year: 2023
  ident: 5369_CR25
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.01.052
– volume: 113
  start-page: 123
  issue: 1
  year: 1999
  ident: 5369_CR18
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(97)00420-7
– volume: 19
  start-page: 694
  issue: 5
  year: 2014
  ident: 5369_CR20
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 5369_CR35
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 7
  start-page: 19
  year: 2016
  ident: 5369_CR27
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 612
  start-page: 322
  year: 2022
  ident: 5369_CR12
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.07.174
– ident: 5369_CR48
  doi: 10.1016/j.swevo.2023.101236
– ident: 5369_CR52
  doi: 10.1007/1-84628-137-7_6
– ident: 5369_CR54
– volume: 606
  start-page: 38
  year: 2022
  ident: 5369_CR38
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.05.053
– ident: 5369_CR47
  doi: 10.1145/3321707.3321831
– volume: 42
  start-page: 8956
  issue: 22
  year: 2015
  ident: 5369_CR26
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.07.051
– volume: 92
  start-page: 430
  year: 2018
  ident: 5369_CR16
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.051
– volume: 58
  year: 2022
  ident: 5369_CR7
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2021.101545
– ident: 5369_CR50
– volume: 30
  start-page: 616
  issue: 6
  year: 2017
  ident: 5369_CR43
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2016.1187301
– volume: 217
  year: 2023
  ident: 5369_CR17
  publication-title: Expert Syst. Appl.
– volume: 1646
  issue: 1
  year: 2020
  ident: 5369_CR41
  publication-title: J. Phys.
– volume: 43
  start-page: 303
  year: 2011
  ident: 5369_CR29
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– ident: 5369_CR46
  doi: 10.1109/ICRA40945.2020.9197314
– volume: 221
  year: 2021
  ident: 5369_CR32
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106959
– volume: 91
  start-page: 407
  year: 2019
  ident: 5369_CR3
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.09.014
– volume: 7
  start-page: 125783
  year: 2019
  ident: 5369_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939294
– volume: 6
  start-page: 163
  year: 2005
  ident: 5369_CR9
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1007/s10710-005-6164-x
– volume: 583
  start-page: 56
  year: 2022
  ident: 5369_CR42
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.11.027
– volume: 630
  start-page: 688
  year: 2023
  ident: 5369_CR22
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.10.099
– volume: 11
  start-page: 107
  issue: 1
  year: 2020
  ident: 5369_CR28
  publication-title: Int. J. Ind. Eng. Comput.
– ident: 5369_CR49
  doi: 10.1109/CEC.2000.870296
SSID ssj0009729
Score 2.363536
Snippet Cloud computing has become an integral part of modern computer science. Cloud service providers (CSPs) often have multiple conflicting objectives for different...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 678
SubjectTerms Cloud computing
Completion time
Computer Communication Networks
Computer Science
Convergence
Decomposition
Efficiency
Evolutionary algorithms
Genetic algorithms
Heuristic
Machine learning
Multiple objective analysis
Operating Systems
Optimization
Optimization algorithms
Parameter sensitivity
Processor Architectures
Scheduling
User requirements
Workflow
Title A decomposition-based multi-objective evolutionary algorithm with reinforcement learning for workflow scheduling in cloud computing environment
URI https://link.springer.com/article/10.1007/s10586-025-05369-y
https://www.proquest.com/docview/3246237313
Volume 28
WOSCitedRecordID wos001563368800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhECa-Dl58G-srHLwpSbssCxwbo_FkjK_0tllg0JraNduH6a_wLwuUTavRg942LBAyD2aAb2YQOkk0l00Q0ul3qkjqTBCRVDJiBVO2aBa8aafFJvj1teh05E0MChvUaPf6STLs1HPBbkx4wCwjTnAySSaLaNmZO-ELNtzePc5S7fJQm6xFXW8uGI-hMj_P8dUczXzMb8-iwdpcrv9vnRtoLXqXuD0Vh020AP0ttF5XbsBRkbfRRxsb8GjyCNki3pgZHNCFpFQv010QwzgKZlFNcNF7Kqvu8PkV-7tbXEHIuarD9SKOxSeesGvCHutle-U7didnZ8l8wDvu9rHulSODdViMb5qLsdtBD5cX9-dXJJZmIDrhyZC4U5rVghqT0JRaqgpwxzZQgoGWhYUMmja13DKl3YcWiVaZLkxqlDWGehdjFy31yz7sIQwmM6kbxCjIlFmpWiZTGQPGGFCAVgOd1hzK36YZOPJZrmVP69zROg-0zicNdFgzMY_aOMid0-i8PE5btIHOaqbNfv8-2_7fuh-g1cTzPWD9DtHSsBrBEVrR42F3UB0HKf0EORHpPg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71gVQutEBRty2tD9zA0m4cx_GxQq2KaFcICuotiu3xdtE2Qdlsq_0V_GVsr6MUBIdyixzbsubhGdvfzAC8SbSQQ8yl0-9U0dSZICqZ5NTmXNlyWIqhXRWbEONxfn0tP8WgsHmHdu-eJMNO_SDYjeceMMupE5xM0uU6bKbOYvmM-Z-_fOtT7YpQm2zEXG-RcxFDZf4-x-_mqPcx_3gWDdbmbPv_1rkDz6J3SU5W4vAc1rB6Adtd5QYSFfkl_DwhBj2aPEK2qDdmhgR0Ia3V99UuSPAuCmbZLEk5m9TNtL25Jf7uljQYcq7qcL1IYvGJCXFNxGO97Ky-J-7k7CyZD3gn04roWb0wRIfF-KYHMXa78PXs9Or9OY2lGahORNJSd0qzOmfGJCxllqkS3bENVc5Ry9JihkObWmG50u5D54lWmS5NapQ1hnkX4xVsVHWFe0DQZCZ1gzhDmXIr1chkKuPIOUeGOBrA245DxY9VBo6iz7XsaV04WheB1sVyAIcdE4uojfPCOY3OyxNsxAbwrmNa__vfs-0_rvsxbJ1fXV4UFx_GHw_gaeJlIOD-DmGjbRb4Gp7ou3Y6b46CxP4CMKvsIg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8xQBMvg8GmdTDmh72BRRvHcfyI2KpNoKrSNtS3KLbP0KlLqjSA-in2lWc7iVom9jDtLXIcy7o_uTv7d3cAHyItZB9T6fQ7VjR2JohKJjm1KVc27-eib5tmE2I0SicTOV7L4g9o9-5Ksslp8FWaivpsbuzZWuIbTz14llMnRImky2ewFXsgvY_Xv16vyu6K0KdswNxskXLRps08vcZj07TyN_-4Ig2WZ7j7_3vegxet10nOGzF5CRtY7MNu19GBtAp-AL_OiUGPMm-hXNQbOUMC6pCW6kfzdyR43wpsXi1JPrspq2l9-5P4M11SYajFqsOxI2mbUtwQN0Q8BszOygfiImpn4XwiPJkWRM_KO0N02IwfWsu9ewXfh5--XXymbcsGqiMR1dRFb1anzJiIxcwylaML51ClHLXMLSbYt7EVlivtHnQaaZXo3MRGWWOYdz1ew2ZRFvgGCJrExO4jzlDG3Eo1MIlKOHLOkSEOenDScSubN5U5slUNZk_rzNE6C7TOlj046hiatVq6yJwz6bw_wQasB6cdA1ev_77a23-b_h6ejz8Os6svo8tD2Im8CAQ44BFs1tUdvoNtfV9PF9VxEN7f8C_1Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decomposition-based+multi-objective+evolutionary+algorithm+with+reinforcement+learning+for+workflow+scheduling+in+cloud+computing+environment&rft.jtitle=Cluster+computing&rft.au=Xue%2C+Fei&rft.au=Wen%2C+Jinbu&rft.au=Wang%2C+Peiwen&rft.au=Fan%2C+Wenyu&rft.date=2025-10-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=10&rft_id=info:doi/10.1007%2Fs10586-025-05369-y&rft.externalDocID=10_1007_s10586_025_05369_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon