A decomposition-based multi-objective evolutionary algorithm with reinforcement learning for workflow scheduling in cloud computing environment
Cloud computing has become an integral part of modern computer science. Cloud service providers (CSPs) often have multiple conflicting objectives for different user requirements. Thus, workflow scheduling in cloud computing environment is a challenge multi-objective optimization problem (MOP). The m...
Uloženo v:
| Vydáno v: | Cluster computing Ročník 28; číslo 10; s. 678 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1386-7857, 1573-7543 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cloud computing has become an integral part of modern computer science. Cloud service providers (CSPs) often have multiple conflicting objectives for different user requirements. Thus, workflow scheduling in cloud computing environment is a challenge multi-objective optimization problem (MOP). The multi-objective evolutionary algorithm (MOEA) is one of the most commonly used approachs, but it is sensitive to parameter settings and exsists the problems of early convergence and local optimum. To improve the convergence speed and optimality of the solution, the augmented Tchebychef (ATCH) as the objective decomposition method is adopted in the MOEA based on decomposition (MOEA/D). For the problem with sensitive parameter settings, Q-learning in reinforcement learning (RL) is designed to select the optional parameter adaptively in the ATCH method. This paper proposed a decomposition-based MOEA with Q-learning (QLMOEA/D) to solve the multi-objective workflow scheduling problem while taking into account the task completion time (makespan), cost and load. Experimental results demonstrate that the proposed QLMOEA/D achieves better convergence and diversity on both benchmark functions (ZDT and DTLZ) and real-world scientific workflows (SWFs). It obtains the best performance in 55.56% of all test cases and outperforms baseline algorithms in 94.44% of scenarios across makespan, cost, and load objectives. |
|---|---|
| AbstractList | Cloud computing has become an integral part of modern computer science. Cloud service providers (CSPs) often have multiple conflicting objectives for different user requirements. Thus, workflow scheduling in cloud computing environment is a challenge multi-objective optimization problem (MOP). The multi-objective evolutionary algorithm (MOEA) is one of the most commonly used approachs, but it is sensitive to parameter settings and exsists the problems of early convergence and local optimum. To improve the convergence speed and optimality of the solution, the augmented Tchebychef (ATCH) as the objective decomposition method is adopted in the MOEA based on decomposition (MOEA/D). For the problem with sensitive parameter settings, Q-learning in reinforcement learning (RL) is designed to select the optional parameter adaptively in the ATCH method. This paper proposed a decomposition-based MOEA with Q-learning (QLMOEA/D) to solve the multi-objective workflow scheduling problem while taking into account the task completion time (makespan), cost and load. Experimental results demonstrate that the proposed QLMOEA/D achieves better convergence and diversity on both benchmark functions (ZDT and DTLZ) and real-world scientific workflows (SWFs). It obtains the best performance in 55.56% of all test cases and outperforms baseline algorithms in 94.44% of scenarios across makespan, cost, and load objectives. |
| ArticleNumber | 678 |
| Author | Wen, Jinbu Dong, Tingting Xue, Fei Geng, Yuge Wang, Peiwen Fan, Wenyu |
| Author_xml | – sequence: 1 givenname: Fei surname: Xue fullname: Xue, Fei organization: School of Information, Beijing Wuzi University – sequence: 2 givenname: Jinbu surname: Wen fullname: Wen, Jinbu organization: School of Information, Beijing Wuzi University – sequence: 3 givenname: Peiwen surname: Wang fullname: Wang, Peiwen organization: School of Information, Beijing Wuzi University – sequence: 4 givenname: Wenyu surname: Fan fullname: Fan, Wenyu organization: School of Information, Beijing Wuzi University – sequence: 5 givenname: Yuge surname: Geng fullname: Geng, Yuge organization: School of Information, Beijing Wuzi University – sequence: 6 givenname: Tingting surname: Dong fullname: Dong, Tingting email: dongtingting@bwu.edu.cn organization: School of Information, Beijing Wuzi University |
| BookMark | eNp9kM1OxCAUhYnRxN8XcEXiGqXQlrI0xr_ExI2uSQuXGcYWRmhnMk_hK0sdE3du4Obcc85NvlN06IMHhC4Lel1QKm5SQaumJpRVhFa8lmR3gE6KSnAiqpIf5pnntWgqcYxOU1pRSqVg8gR93WIDOgzrkNzogiddm8DgYepHR0K3Aj26DWDYhH6a923c4bZfhOjG5YC3-cURnLchahjAj7iHNnrnFzhLeBvih-3DFie9BDP1s-481n2YDJ6v5s4sgd-4GPycP0dHtu0TXPz-Z-j94f7t7om8vD4-392-EM0EG0kjpdUNN4bxklvetSBlA11TgZathRqoLa2wVafzoBumu1q3pjSdNYYXTPIzdLXvXcfwOUEa1SpM0eeTirOyZlzwgmcX27t0DClFsGod3ZAZqIKqGbzag1cZvPoBr3Y5xPehlM1-AfGv-p_UNz4Wj0Q |
| Cites_doi | 10.1109/TCYB.2016.2550502 10.1016/j.cie.2020.106649 10.1016/j.simpat.2018.10.004 10.1109/TEVC.2008.925798 10.1007/s10586-020-03205-z 10.1016/j.cor.2012.02.021 10.1109/ESCIW.2009.5408002 10.1016/j.future.2019.02.019 10.1109/TEVC.2015.2443001 10.1016/j.eswa.2022.119025 10.1162/106365600568202 10.1109/TEVC.2017.2704118 10.1016/j.ejor.2020.11.016 10.1016/j.applthermaleng.2018.10.020 10.1109/CEC.2002.1007015 10.1016/j.asoc.2020.106895 10.1016/j.cie.2020.106778 10.1016/j.egyr.2023.01.052 10.1016/S0377-2217(97)00420-7 10.1109/TEVC.2014.2373386 10.1109/MCI.2017.2742868 10.1016/j.ins.2022.07.174 10.1016/j.swevo.2023.101236 10.1007/1-84628-137-7_6 10.1016/j.ins.2022.05.053 10.1145/3321707.3321831 10.1016/j.eswa.2015.07.051 10.1016/j.eswa.2017.09.051 10.1016/j.jocs.2021.101545 10.1080/0951192X.2016.1187301 10.1016/j.cad.2010.12.015 10.1109/ICRA40945.2020.9197314 10.1016/j.knosys.2021.106959 10.1016/j.future.2018.09.014 10.1109/ACCESS.2019.2939294 10.1007/s10710-005-6164-x 10.1016/j.ins.2021.11.027 10.1016/j.ins.2022.10.099 10.1109/CEC.2000.870296 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-025-05369-y |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_025_05369_y |
| GrantInformation_xml | – fundername: Beijing Wuzi University grantid: 2024XJKY27; 2024XJKY27 funderid: https://doi.org/10.13039/501100015256 – fundername: Beijing Municipal Education Commission grantid: KZ202210037046 funderid: https://doi.org/10.13039/501100003213 – fundername: Beijing Municipal Education Commission of China grantid: KM202410037005; KM202410037005 – fundername: National Social Science Project grantid: 21FGLB046 – fundername: National Natural Science Foundation of China grantid: 72101033 funderid: https://doi.org/10.13039/501100001809 – fundername: Beijing Social Science Fund grantid: 20GLB026 funderid: https://doi.org/10.13039/501100009625 – fundername: School level Youth Research Fund Project grantid: 2024XJQN22; 2024XJQN22 – fundername: the Outstanding Young Science and Technology Worker of Science and Technology Projects grantid: JCQN2024007; JCQN2024007 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29B 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAIAL AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFFHD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- N2Q O9- OVD PHGZM PHGZT PQGLB RNI RZC RZE RZK TEORI JQ2 |
| ID | FETCH-LOGICAL-c272t-899fc83dd2343f3bae998eb85ec9afe6e0f4f7f5bc0f4c82cb6cad4dbfdd31293 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001563368800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Wed Nov 26 13:51:43 EST 2025 Sat Nov 29 07:25:40 EST 2025 Tue Oct 07 10:56:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Cloud computing MOEA Workflow scheduling Reinforcement learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-899fc83dd2343f3bae998eb85ec9afe6e0f4f7f5bc0f4c82cb6cad4dbfdd31293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3246237313 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3246237313 crossref_primary_10_1007_s10586_025_05369_y springer_journals_10_1007_s10586_025_05369_y |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | C Coello (5369_CR9) 2005; 6 Z Zhang (5369_CR42) 2022; 583 H Li (5369_CR19) 2008; 13 I-D Psychas (5369_CR26) 2015; 42 R Chen (5369_CR6) 2020; 149 V Ho-Huu (5369_CR16) 2018; 92 F Abazari (5369_CR1) 2019; 93 X Ma (5369_CR23) 2017; 22 Y Zhu (5369_CR44) 2023; 213 RV Rao (5369_CR27) 2016; 7 K Li (5369_CR20) 2014; 19 RV Rao (5369_CR29) 2011; 43 Q Dang (5369_CR11) 2023; 213 M-L Chiang (5369_CR8) 2023; 212 X Gao (5369_CR15) 2022; 2258 L Chen (5369_CR7) 2022; 58 Y Tian (5369_CR35) 2017; 12 E Zitzler (5369_CR45) 2000; 8 TC Bora (5369_CR5) 2019; 146 Y Gao (5369_CR14) 2019; 7 Y Zeng (5369_CR41) 2020; 1646 AS Oliver (5369_CR25) 2023; 9 M Alaei (5369_CR2) 2021; 99 Y Yuan (5369_CR40) 2015; 20 GA de Morais (5369_CR13) 2022; 15 AR Arunarani (5369_CR3) 2019; 91 A Mohammadzadeh (5369_CR24) 2021; 24 H Wang (5369_CR36) 2016; 47 Y Li (5369_CR22) 2023; 630 M Kolonko (5369_CR18) 1999; 113 RV Rao (5369_CR28) 2020; 11 GL Stavrinides (5369_CR33) 2019; 96 F Zhao (5369_CR43) 2017; 30 W Hu (5369_CR17) 2023; 217 5369_CR54 5369_CR55 5369_CR52 5369_CR53 Z Shao (5369_CR32) 2021; 221 5369_CR50 5369_CR51 W Li (5369_CR21) 2023; 78 5369_CR49 X Xia (5369_CR38) 2022; 606 5369_CR47 5369_CR48 Q Wang (5369_CR37) 2022; 65 K Dächert (5369_CR10) 2012; 39 JF Robles (5369_CR30) 2020; 1 K-C Ying (5369_CR39) 2022; 169 Q Dang (5369_CR12) 2022; 612 K Sun (5369_CR34) 2023; 215 5369_CR46 C Audet (5369_CR4) 2021; 292 S Saeedi (5369_CR31) 2020; 147 |
| References_xml | – volume: 47 start-page: 1510 issue: 6 year: 2016 ident: 5369_CR36 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2550502 – volume: 78 year: 2023 ident: 5369_CR21 publication-title: Swarm Evol. Comput. – volume: 215 year: 2023 ident: 5369_CR34 publication-title: Expert Syst. Appl. – volume: 15 issue: 192 year: 2022 ident: 5369_CR13 publication-title: Expert Syst. Appl. – volume: 147 start-page: 106649 year: 2020 ident: 5369_CR31 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106649 – volume: 65 year: 2022 ident: 5369_CR37 publication-title: J. Comput. Sci. – volume: 93 start-page: 119 year: 2019 ident: 5369_CR1 publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2018.10.004 – volume: 13 start-page: 284 issue: 2 year: 2008 ident: 5369_CR19 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.925798 – volume: 24 start-page: 1479 year: 2021 ident: 5369_CR24 publication-title: Clust. Comput. doi: 10.1007/s10586-020-03205-z – volume: 1 issue: 147 year: 2020 ident: 5369_CR30 publication-title: Expert Syst. Appl. – volume: 39 start-page: 2929 issue: 12 year: 2012 ident: 5369_CR10 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.02.021 – ident: 5369_CR53 doi: 10.1109/ESCIW.2009.5408002 – volume: 96 start-page: 216 year: 2019 ident: 5369_CR33 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.019 – volume: 20 start-page: 180 issue: 2 year: 2015 ident: 5369_CR40 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2443001 – volume: 213 year: 2023 ident: 5369_CR11 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119025 – volume: 2258 issue: 1 year: 2022 ident: 5369_CR15 publication-title: J. Phys. – volume: 8 start-page: 173 issue: 2 year: 2000 ident: 5369_CR45 publication-title: Evol. Comput. doi: 10.1162/106365600568202 – volume: 169 year: 2022 ident: 5369_CR39 publication-title: Comput. Ind. Eng. – ident: 5369_CR55 – volume: 22 start-page: 226 issue: 2 year: 2017 ident: 5369_CR23 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2704118 – volume: 292 start-page: 397 issue: 2 year: 2021 ident: 5369_CR4 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2020.11.016 – volume: 212 year: 2023 ident: 5369_CR8 publication-title: Expert Syst. Appl. – volume: 213 year: 2023 ident: 5369_CR44 publication-title: Expert Syst. Appl. – volume: 146 start-page: 688 year: 2019 ident: 5369_CR5 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.020 – ident: 5369_CR51 doi: 10.1109/CEC.2002.1007015 – volume: 99 year: 2021 ident: 5369_CR2 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106895 – volume: 149 year: 2020 ident: 5369_CR6 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106778 – volume: 9 start-page: 2494 year: 2023 ident: 5369_CR25 publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.01.052 – volume: 113 start-page: 123 issue: 1 year: 1999 ident: 5369_CR18 publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(97)00420-7 – volume: 19 start-page: 694 issue: 5 year: 2014 ident: 5369_CR20 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2373386 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 5369_CR35 publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – volume: 7 start-page: 19 year: 2016 ident: 5369_CR27 publication-title: Int. J. Ind. Eng. Comput. – volume: 612 start-page: 322 year: 2022 ident: 5369_CR12 publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.07.174 – ident: 5369_CR48 doi: 10.1016/j.swevo.2023.101236 – ident: 5369_CR52 doi: 10.1007/1-84628-137-7_6 – ident: 5369_CR54 – volume: 606 start-page: 38 year: 2022 ident: 5369_CR38 publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.05.053 – ident: 5369_CR47 doi: 10.1145/3321707.3321831 – volume: 42 start-page: 8956 issue: 22 year: 2015 ident: 5369_CR26 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.07.051 – volume: 92 start-page: 430 year: 2018 ident: 5369_CR16 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.051 – volume: 58 year: 2022 ident: 5369_CR7 publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2021.101545 – ident: 5369_CR50 – volume: 30 start-page: 616 issue: 6 year: 2017 ident: 5369_CR43 publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2016.1187301 – volume: 217 year: 2023 ident: 5369_CR17 publication-title: Expert Syst. Appl. – volume: 1646 issue: 1 year: 2020 ident: 5369_CR41 publication-title: J. Phys. – volume: 43 start-page: 303 year: 2011 ident: 5369_CR29 publication-title: Comput.-Aided Des. doi: 10.1016/j.cad.2010.12.015 – ident: 5369_CR46 doi: 10.1109/ICRA40945.2020.9197314 – volume: 221 year: 2021 ident: 5369_CR32 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106959 – volume: 91 start-page: 407 year: 2019 ident: 5369_CR3 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.09.014 – volume: 7 start-page: 125783 year: 2019 ident: 5369_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939294 – volume: 6 start-page: 163 year: 2005 ident: 5369_CR9 publication-title: Genet. Program. Evol. Mach. doi: 10.1007/s10710-005-6164-x – volume: 583 start-page: 56 year: 2022 ident: 5369_CR42 publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.11.027 – volume: 630 start-page: 688 year: 2023 ident: 5369_CR22 publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.10.099 – volume: 11 start-page: 107 issue: 1 year: 2020 ident: 5369_CR28 publication-title: Int. J. Ind. Eng. Comput. – ident: 5369_CR49 doi: 10.1109/CEC.2000.870296 |
| SSID | ssj0009729 |
| Score | 2.363536 |
| Snippet | Cloud computing has become an integral part of modern computer science. Cloud service providers (CSPs) often have multiple conflicting objectives for different... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 678 |
| SubjectTerms | Cloud computing Completion time Computer Communication Networks Computer Science Convergence Decomposition Efficiency Evolutionary algorithms Genetic algorithms Heuristic Machine learning Multiple objective analysis Operating Systems Optimization Optimization algorithms Parameter sensitivity Processor Architectures Scheduling User requirements Workflow |
| Title | A decomposition-based multi-objective evolutionary algorithm with reinforcement learning for workflow scheduling in cloud computing environment |
| URI | https://link.springer.com/article/10.1007/s10586-025-05369-y https://www.proquest.com/docview/3246237313 |
| Volume | 28 |
| WOSCitedRecordID | wos001563368800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6-Dl58i_VFDt400G52N9ljEcWDFPGFtyU7SWqldmVblf4K_7KTNEur6EFvSzaEkJlkvkm-mSHkSEMTIDWCpalKWaziFpOA-wp4pkwzUZZ7bs79peh05MNDdhWCwoY1271-kvQn9UywWyIdYTZhqDhpxsbzZBHNnXQFG65v7qepdoWvTdbi2FvIRIRQmZ_H-GqOphjz27Ootzbnq_-b5xpZCeiStifqsE7mzGCDrNaVG2jYyJvko021cWzyQNlizphp6tmFrCyeJqcgNW9BMVU1pqrfLave6PGZurtbWhmfcxX89SINxSe6FJuo43rZfvlO0XNGS-YC3mlvQKFfvmoKfjKuaSbGbovcnZ_dnl6wUJqBQSSiEUMvzYLkWkc85pYXyqDbZgqZGMiUNalp2tgKmxSAHyAjKFJQOtaF1Zo7iLFNFgblwOwQih4LggptWgWiCQFCSQkR-m0ZIlXEHkWDHNcSyl8mGTjyaa5lt9Y5rnXu1zofN8h-LcQ87MZhjqARUZ7gLd4gJ7XQpr9_H233b933yHLk5O65fvtkYVS9mgOyBG-j3rA69Fr6CUtB6Jo |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4NhgQvYzAQ3WDzw942S22cxM4jmkAgumpiDPEWOWcbikozpYWpv4K_zNl1VEDbA3uLHMuyfGffd_Z3dwCfDXYRcyt5nuucpzrtcYW0r1AU2nYz7UTg5pz35WCgLi6KHzEobNKy3dsnyXBSPwp2y5QnzGacFCcv-GwJXqdksXzG_NOf54tUuzLUJusJ6i1VJmOozN_HeGqOFhjz2bNosDaH6_83z7fwJqJLtj9Xhw14ZcebsN5WbmBxI7-D-31mrGeTR8oW98bMsMAu5HV1PT8Fmb2LiqmbGdOjy7oZTq9umL-7ZY0NOVcxXC-yWHziklET81wvN6r_MPKcyZL5gHc2HDMc1beGYZiMb3oUY7cFvw4Pzr4d8ViagWMikyknL82hEsYkIhVOVNqS22YrlVkstLO57brUSZdVSB-oEqxy1CY1lTNGeIixDcvjemx3gJHHQqDC2F5FaEKi1EphQn5bQUiVsEfVgS-thMrf8wwc5SLXsl_rkta6DGtdzjqw2wqxjLtxUhJoJJQnRU904GsrtMXvf4_2_mXdP8Hq0dn3ftk_Hpx8gLXE60Dg_e3C8rS5tXuwgnfT4aT5GDT2ATsr634 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RqCouUPohlkLrQ2_UYjdOYueICitQ0QqJgrhFztiGrZYEhQDaX8FfZuxNtFvUHqreIseyLM_Y88Z-MwPw1WAfMbWSp6lOeazjAVdI-wpFpm0_0U4Ebs7FiRyN1OVldroQxR_Y7t2T5CymwWdpKpu9W-P2FgLfEuXJswknJUozPn0FK7En0nt__exinnZXhjplA0G9pUpkGzbz5zF-N01zvPniiTRYnuH6_8_5Lay1qJPtz9RkA5Zs-Q7Wu4oOrN3g7-FpnxnrWeYtlYt7I2dYYB3yqvg1Ox2ZfWgVVtdTpidXVT1urm-Yv9NltQ25WDFcO7K2KMUVoybmOWBuUj0y8qjJwvlAeDYuGU6qe8MwTMY3LcTefYDz4eHP70e8LdnAMZJRw8l7c6iEMZGIhROFtuTO2UIlFjPtbGr7LnbSJQXSB6oIixS1iU3hjBEeenyE5bIq7SYw8mQIbBg7KAhlSJRaKYzIn8sIwRImKXqw20krv51l5sjnOZj9Wue01nlY63zag-1OoHm7S-9yApOE_qQYiB586wQ4__330bb-rfsXeHN6MMxPjkc_PsFq5FUg0AG3Ybmp7-0OvMaHZnxXfw7K-wwNAvRi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decomposition-based+multi-objective+evolutionary+algorithm+with+reinforcement+learning+for+workflow+scheduling+in+cloud+computing+environment&rft.jtitle=Cluster+computing&rft.au=Xue%2C+Fei&rft.au=Wen%2C+Jinbu&rft.au=Wang%2C+Peiwen&rft.au=Fan%2C+Wenyu&rft.date=2025-10-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=10&rft_id=info:doi/10.1007%2Fs10586-025-05369-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_025_05369_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |