Two-stage dynamic data envelopment analysis measuring the overall efficiency and productivity changes of industry and agriculture in EU countries
Carbon emissions from industrial production affect agricultural production, and forests have the benefit of being carbon neutral. Therefore, this study adopts the dynamic network data envelopment analysis (DEA) model, takes carbon emissions as the link between industry and agriculture, and explores...
Gespeichert in:
| Veröffentlicht in: | Journal of cleaner production Jg. 382; S. 135332 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.01.2023
|
| Schlagworte: | |
| ISSN: | 0959-6526, 1879-1786 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Carbon emissions from industrial production affect agricultural production, and forests have the benefit of being carbon neutral. Therefore, this study adopts the dynamic network data envelopment analysis (DEA) model, takes carbon emissions as the link between industry and agriculture, and explores the production efficiency of industry and agriculture. It further incorporates forest area as a carry-over for evaluation and discusses 27 EU members' dynamic overall efficiency and productivity changes in 2014–2018. The empirical results are as follows. 1) The EU countries' industrial stage efficiency is better than their agriculture efficiency, with Germany, Luxembourg, Malta, and the Netherlands exhibiting the best efficiency performance. 2) The overall efficiencies of the Czech Republic, Portugal, and Croatia are the worst, because their misallocation of resources and excessive energy input cannot improve their output value. 3) The agricultural productivity of EU countries is better than that of industry productivity. 4) The EU has made great efforts at planting forests. 5) As energy consumption and carbon emissions are still rising, the EU still needs to do more to achieve the carbon reduction goals of the Paris Agreement and the Eu's 2030 zero carbon emissions.
•A dynamic network model assesses industrial and agricultural efficiencies in the EU.•Forests in the EU have grown slightly over time.•It is difficult for high-income economies to cut and reduce carbon emissions.•The EU members still need to do more to achieve their carbon reduction goals. |
|---|---|
| AbstractList | Carbon emissions from industrial production affect agricultural production, and forests have the benefit of being carbon neutral. Therefore, this study adopts the dynamic network data envelopment analysis (DEA) model, takes carbon emissions as the link between industry and agriculture, and explores the production efficiency of industry and agriculture. It further incorporates forest area as a carry-over for evaluation and discusses 27 EU members' dynamic overall efficiency and productivity changes in 2014–2018. The empirical results are as follows. 1) The EU countries' industrial stage efficiency is better than their agriculture efficiency, with Germany, Luxembourg, Malta, and the Netherlands exhibiting the best efficiency performance. 2) The overall efficiencies of the Czech Republic, Portugal, and Croatia are the worst, because their misallocation of resources and excessive energy input cannot improve their output value. 3) The agricultural productivity of EU countries is better than that of industry productivity. 4) The EU has made great efforts at planting forests. 5) As energy consumption and carbon emissions are still rising, the EU still needs to do more to achieve the carbon reduction goals of the Paris Agreement and the Eu's 2030 zero carbon emissions. Carbon emissions from industrial production affect agricultural production, and forests have the benefit of being carbon neutral. Therefore, this study adopts the dynamic network data envelopment analysis (DEA) model, takes carbon emissions as the link between industry and agriculture, and explores the production efficiency of industry and agriculture. It further incorporates forest area as a carry-over for evaluation and discusses 27 EU members' dynamic overall efficiency and productivity changes in 2014–2018. The empirical results are as follows. 1) The EU countries' industrial stage efficiency is better than their agriculture efficiency, with Germany, Luxembourg, Malta, and the Netherlands exhibiting the best efficiency performance. 2) The overall efficiencies of the Czech Republic, Portugal, and Croatia are the worst, because their misallocation of resources and excessive energy input cannot improve their output value. 3) The agricultural productivity of EU countries is better than that of industry productivity. 4) The EU has made great efforts at planting forests. 5) As energy consumption and carbon emissions are still rising, the EU still needs to do more to achieve the carbon reduction goals of the Paris Agreement and the Eu's 2030 zero carbon emissions. •A dynamic network model assesses industrial and agricultural efficiencies in the EU.•Forests in the EU have grown slightly over time.•It is difficult for high-income economies to cut and reduce carbon emissions.•The EU members still need to do more to achieve their carbon reduction goals. |
| ArticleNumber | 135332 |
| Author | Chiu, Yung-ho Lin, I-Fang Lu, Ching-Cheng Lin, Tai-Yu |
| Author_xml | – sequence: 1 givenname: Ching-Cheng orcidid: 0000-0001-7605-0918 surname: Lu fullname: Lu, Ching-Cheng email: join1965@gmail.com organization: Department of Business, National Open University, Address: No. 172, Zhongzheng Road, Luzhou District, New Taipei City, 247, Taiwan – sequence: 2 givenname: I-Fang surname: Lin fullname: Lin, I-Fang email: fun752052@gmail.com organization: Department of Economics, Soochow University, Address: No. 56, Kueiyang St., Sec. 1, Taipei, 100, Taiwan – sequence: 3 givenname: Tai-Yu surname: Lin fullname: Lin, Tai-Yu email: eickyla@gmail.com organization: Department of Business Administration, National Cheng Kung University, Address: No. 1, University Road, Tainan City, 701, Taiwan – sequence: 4 givenname: Yung-ho orcidid: 0000-0002-9702-2892 surname: Chiu fullname: Chiu, Yung-ho email: echiu@scu.edu.tw organization: Department of Economics, Soochow University, Address: 56, Kueiyang St., Sec. 1, Taipei, 10048, Taiwan |
| BookMark | eNqFkc1u1DAUhS1UJKaFR0Dykk0G_yRxIhYIVQUqVWLTri3n5nrqkWMPtjMoj8EbNyVdsenqLu75jo7OuSQXIQYk5CNne854-_m4P4LHU4p7wYTYc9lIKd6QHe9UX3HVtRdkx_qmr9pGtO_IZc5Hxrhiqt6Rv_d_YpWLOSAdl2AmB3Q0xVAMZ_TxNGEo1ATjl-wyndDkOblwoOURaTxjMt5TtNaBwwDLqhzpmmOcobizKwuFRxMOmGm01IVxziVtInNIDmZf5oTrg948UIhzKMlhfk_eWuMzfni5V-Th-8399c_q7teP2-tvdxUIJUrVqUa2g6mVRS77WjFUfQvKGmiGumNjV_NxwFa0HNBKXoOx0A5cSjUwYRuQV-TT5rsG_j1jLnpyGdB7EzDOWUveyK7patWt0i-bFFLMOaHV4IopLq6JjfOaM_08hD7qlyH08xB6G2Klm__oU3KTScur3NeNw7WFs8Ok87-acXQJoegxulccngAIGKwp |
| CitedBy_id | crossref_primary_10_1016_j_jenvman_2024_122289 crossref_primary_10_1016_j_ecolecon_2024_108439 crossref_primary_10_1109_TEM_2025_3592861 crossref_primary_10_3390_su16135376 crossref_primary_10_1007_s11368_024_03914_7 crossref_primary_10_1016_j_ecofro_2024_12_003 crossref_primary_10_1016_j_jenvman_2025_124782 crossref_primary_10_1016_j_ecolind_2024_112929 crossref_primary_10_1016_j_forpol_2025_103461 crossref_primary_10_3390_su17188490 crossref_primary_10_3390_agriculture14091454 crossref_primary_10_3390_buildings13071678 crossref_primary_10_1016_j_geoen_2025_213665 |
| Cites_doi | 10.1002/qj.49706427503 10.2307/1913388 10.1016/j.omega.2009.07.003 10.1016/j.jclepro.2013.09.035 10.1007/BF03006863 10.1016/0377-2217(78)90138-8 10.1016/j.eiar.2016.05.002 10.2307/2343100 10.1016/j.jclepro.2016.07.166 10.1016/j.jclepro.2017.07.081 10.1016/j.omega.2013.04.002 10.1007/s11356-020-09980-x 10.1016/j.rser.2016.12.030 10.1016/j.jclepro.2016.01.045 10.1287/mnsc.30.9.1078 10.1016/j.jclepro.2019.05.014 10.1016/j.techfore.2019.119874 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jclepro.2022.135332 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1786 |
| ExternalDocumentID | 10_1016_j_jclepro_2022_135332 S095965262204906X |
| GeographicLocations | Czech Republic Netherlands Luxembourg Portugal Germany Croatia Malta |
| GeographicLocations_xml | – name: Germany – name: Luxembourg – name: Netherlands – name: Malta – name: Czech Republic – name: Croatia – name: Portugal |
| GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c272t-87536ba47fe139470e796c7fac5b480d841dbe6261cef314cafc6b1337b02f5c3 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000997919400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-6526 |
| IngestDate | Sun Sep 28 09:40:29 EDT 2025 Sat Nov 29 07:06:53 EST 2025 Tue Nov 18 21:32:34 EST 2025 Fri Feb 23 02:39:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Industry Agricultural efficiency Forests Dynamic network DEA Carbon emissions |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c272t-87536ba47fe139470e796c7fac5b480d841dbe6261cef314cafc6b1337b02f5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9702-2892 0000-0001-7605-0918 |
| PQID | 3153858478 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153858478 crossref_citationtrail_10_1016_j_jclepro_2022_135332 crossref_primary_10_1016_j_jclepro_2022_135332 elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_135332 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of cleaner production |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Tone, Tsutsui (bib17) 2014; 42 Ren, Tian, Chen, Shen (bib15) 2021; 28 Tone, Tsutsui (bib16) 2010; 38 Chen, Jia (bib5) 2017; 142 Mardani, Zavadskas, Streimikiene, Jusoh, Khoshnoudi (bib14) 2017; 70 Li, Shi (bib11) 2014; 65 Malmquist (bib13) 1953; 4 Charnes, Cooper, Rhodes (bib4) 1978; 2 Färe, Grosskopf, Whittaker (bib7) 2007 Lu, Chen, Hsieh, Chou (bib12) 2019; 324 Farrell (bib8) 1957; 120 Wang, Zhao, Zhang (bib18) 2016; 60 Feng, Wang (bib9) 2017; 164 Kuang, Lu, Zhou, Chen (bib10) 2020; 151 Banker, Charnes, Cooper (bib1) 1984; 30 Färe, Grosskopf, Roos (bib6) 1995 Wang, Ding, Liu (bib19) 2019; 229 Callendar (bib2) 1938; 64 Caves, Christensen, Diewert (bib3) 1982; 50 Yang, Zhang (bib20) 2018; 173 Tone (10.1016/j.jclepro.2022.135332_bib16) 2010; 38 Wang (10.1016/j.jclepro.2022.135332_bib19) 2019; 229 Banker (10.1016/j.jclepro.2022.135332_bib1) 1984; 30 Malmquist (10.1016/j.jclepro.2022.135332_bib13) 1953; 4 Callendar (10.1016/j.jclepro.2022.135332_bib2) 1938; 64 Charnes (10.1016/j.jclepro.2022.135332_bib4) 1978; 2 Färe (10.1016/j.jclepro.2022.135332_bib6) 1995 Färe (10.1016/j.jclepro.2022.135332_bib7) 2007 Caves (10.1016/j.jclepro.2022.135332_bib3) 1982; 50 Farrell (10.1016/j.jclepro.2022.135332_bib8) 1957; 120 Ren (10.1016/j.jclepro.2022.135332_bib15) 2021; 28 Kuang (10.1016/j.jclepro.2022.135332_bib10) 2020; 151 Feng (10.1016/j.jclepro.2022.135332_bib9) 2017; 164 Lu (10.1016/j.jclepro.2022.135332_bib12) 2019; 324 Chen (10.1016/j.jclepro.2022.135332_bib5) 2017; 142 Li (10.1016/j.jclepro.2022.135332_bib11) 2014; 65 Wang (10.1016/j.jclepro.2022.135332_bib18) 2016; 60 Yang (10.1016/j.jclepro.2022.135332_bib20) 2018; 173 Mardani (10.1016/j.jclepro.2022.135332_bib14) 2017; 70 Tone (10.1016/j.jclepro.2022.135332_bib17) 2014; 42 |
| References_xml | – volume: 324 year: 2019 ident: bib12 article-title: Dynamic energy efficiency of slack‐based measure in high‐income economies publication-title: Energy Sci. Eng. – volume: 60 start-page: 156 year: 2016 end-page: 168 ident: bib18 article-title: Environmental assessment and investment strategies of provincial industrial sector in China—analysis based on DEA model publication-title: Environ. Impact Assess. Rev. – volume: 50 start-page: 1393 year: 1982 ident: bib3 article-title: The economic theory of index numbers and the measurement of input, output, and productivity publication-title: Econometrica – volume: 229 start-page: 53 year: 2019 end-page: 64 ident: bib19 article-title: Eco-efficiency measurement of industrial sectors in China: a hybrid super-efficiency DEA analysis publication-title: J. Clean. Prod. – year: 1995 ident: bib6 article-title: The Malmquist Overall Factor Productivity Index: Some Remarks – volume: 28 start-page: 1901 year: 2021 end-page: 1918 ident: bib15 article-title: Energy consumption, CO2 emissions, and agricultural disaster efficiency evaluation of China based on the two-stage dynamic DEA method publication-title: Environ. Sci. Pollut. Control Ser. – volume: 173 start-page: 100 year: 2018 end-page: 111 ident: bib20 article-title: Assessing regional eco-efficiency from the perspective of resource, environmental and economic performance in China: a bootstrapping approach in global data envelopment analysis publication-title: J. Clean. Prod. – volume: 120 start-page: 253 year: 1957 end-page: 281 ident: bib8 article-title: The measurement of productive efficiency publication-title: J. Roy. Stat. Soc. – volume: 38 start-page: 145 year: 2010 end-page: 156 ident: bib16 article-title: Dynamic DEA: a slacks-based measure approach publication-title: Omega – volume: 142 start-page: 846 year: 2017 end-page: 853 ident: bib5 article-title: Environmental efficiency analysis of China's regional industry: a data envelopment analysis (DEA) based approach publication-title: J. Clean. Prod. – start-page: 209 year: 2007 end-page: 240 ident: bib7 article-title: Network dea publication-title: Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis – volume: 164 start-page: 1531 year: 2017 end-page: 1541 ident: bib9 article-title: Analysis of energy efficiency and energy savings potential in China's provincial industrial sectors publication-title: J. Clean. Prod. – volume: 151 year: 2020 ident: bib10 article-title: Provincial cultivated land use efficiency in China: empirical analysis based on the SBM-DEA model with carbon emissions considered publication-title: Technol. Forecast. Soc. Change – volume: 30 start-page: 1078 year: 1984 end-page: 1092 ident: bib1 article-title: Some models for estimating technical and scale inefficiencies in data envelopment analysis publication-title: Manag. Sci. – volume: 70 start-page: 1298 year: 2017 end-page: 1322 ident: bib14 article-title: A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency publication-title: Renew. Sustain. Energy Rev. – volume: 4 start-page: 209 year: 1953 end-page: 242 ident: bib13 article-title: Index numbers and indifference surfaces publication-title: Trab. Estadística – volume: 64 start-page: 223 year: 1938 end-page: 240 ident: bib2 article-title: The artificial production of carbon dioxide and its influence on temperature: the artificial production of carbon dioxide publication-title: Q. J. R. Meteorol. Soc. – volume: 42 start-page: 124 year: 2014 end-page: 131 ident: bib17 article-title: Dynamic DEA with network structure: a slacks-based measure approach publication-title: Omega – volume: 2 start-page: 429 year: 1978 end-page: 444 ident: bib4 article-title: Measuring the efficiency of decision making units publication-title: Eur. J. Oper. Res. – volume: 65 start-page: 97 year: 2014 end-page: 107 ident: bib11 article-title: Energy efficiency analysis on Chinese industrial sectors: an improved Super-SBM model with undesirable outputs publication-title: J. Clean. Prod. – volume: 64 start-page: 223 issue: 275 year: 1938 ident: 10.1016/j.jclepro.2022.135332_bib2 article-title: The artificial production of carbon dioxide and its influence on temperature: the artificial production of carbon dioxide publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.49706427503 – volume: 50 start-page: 1393 issue: 6 year: 1982 ident: 10.1016/j.jclepro.2022.135332_bib3 article-title: The economic theory of index numbers and the measurement of input, output, and productivity publication-title: Econometrica doi: 10.2307/1913388 – volume: 38 start-page: 145 issue: 3–4 year: 2010 ident: 10.1016/j.jclepro.2022.135332_bib16 article-title: Dynamic DEA: a slacks-based measure approach publication-title: Omega doi: 10.1016/j.omega.2009.07.003 – volume: 65 start-page: 97 year: 2014 ident: 10.1016/j.jclepro.2022.135332_bib11 article-title: Energy efficiency analysis on Chinese industrial sectors: an improved Super-SBM model with undesirable outputs publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.09.035 – volume: 4 start-page: 209 issue: 2 year: 1953 ident: 10.1016/j.jclepro.2022.135332_bib13 article-title: Index numbers and indifference surfaces publication-title: Trab. Estadística doi: 10.1007/BF03006863 – volume: 2 start-page: 429 issue: 6 year: 1978 ident: 10.1016/j.jclepro.2022.135332_bib4 article-title: Measuring the efficiency of decision making units publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(78)90138-8 – volume: 60 start-page: 156 year: 2016 ident: 10.1016/j.jclepro.2022.135332_bib18 article-title: Environmental assessment and investment strategies of provincial industrial sector in China—analysis based on DEA model publication-title: Environ. Impact Assess. Rev. doi: 10.1016/j.eiar.2016.05.002 – volume: 120 start-page: 253 issue: 3 year: 1957 ident: 10.1016/j.jclepro.2022.135332_bib8 article-title: The measurement of productive efficiency publication-title: J. Roy. Stat. Soc. doi: 10.2307/2343100 – volume: 324 year: 2019 ident: 10.1016/j.jclepro.2022.135332_bib12 article-title: Dynamic energy efficiency of slack‐based measure in high‐income economies publication-title: Energy Sci. Eng. – start-page: 209 year: 2007 ident: 10.1016/j.jclepro.2022.135332_bib7 article-title: Network dea – volume: 173 start-page: 100 year: 2018 ident: 10.1016/j.jclepro.2022.135332_bib20 article-title: Assessing regional eco-efficiency from the perspective of resource, environmental and economic performance in China: a bootstrapping approach in global data envelopment analysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.07.166 – volume: 164 start-page: 1531 year: 2017 ident: 10.1016/j.jclepro.2022.135332_bib9 article-title: Analysis of energy efficiency and energy savings potential in China's provincial industrial sectors publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.07.081 – volume: 42 start-page: 124 issue: 1 year: 2014 ident: 10.1016/j.jclepro.2022.135332_bib17 article-title: Dynamic DEA with network structure: a slacks-based measure approach publication-title: Omega doi: 10.1016/j.omega.2013.04.002 – year: 1995 ident: 10.1016/j.jclepro.2022.135332_bib6 – volume: 28 start-page: 1901 issue: 2 year: 2021 ident: 10.1016/j.jclepro.2022.135332_bib15 article-title: Energy consumption, CO2 emissions, and agricultural disaster efficiency evaluation of China based on the two-stage dynamic DEA method publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-020-09980-x – volume: 70 start-page: 1298 year: 2017 ident: 10.1016/j.jclepro.2022.135332_bib14 article-title: A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.12.030 – volume: 142 start-page: 846 year: 2017 ident: 10.1016/j.jclepro.2022.135332_bib5 article-title: Environmental efficiency analysis of China's regional industry: a data envelopment analysis (DEA) based approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.01.045 – volume: 30 start-page: 1078 issue: 9 year: 1984 ident: 10.1016/j.jclepro.2022.135332_bib1 article-title: Some models for estimating technical and scale inefficiencies in data envelopment analysis publication-title: Manag. Sci. doi: 10.1287/mnsc.30.9.1078 – volume: 229 start-page: 53 year: 2019 ident: 10.1016/j.jclepro.2022.135332_bib19 article-title: Eco-efficiency measurement of industrial sectors in China: a hybrid super-efficiency DEA analysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.014 – volume: 151 year: 2020 ident: 10.1016/j.jclepro.2022.135332_bib10 article-title: Provincial cultivated land use efficiency in China: empirical analysis based on the SBM-DEA model with carbon emissions considered publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2019.119874 |
| SSID | ssj0017074 |
| Score | 2.46765 |
| Snippet | Carbon emissions from industrial production affect agricultural production, and forests have the benefit of being carbon neutral. Therefore, this study adopts... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 135332 |
| SubjectTerms | Agricultural efficiency agricultural productivity carbon Carbon emissions Croatia Czech Republic Dynamic network DEA energy Forests Germany Industry Luxembourg Malta Netherlands Portugal United Nations Framework Convention on Climate Change |
| Title | Two-stage dynamic data envelopment analysis measuring the overall efficiency and productivity changes of industry and agriculture in EU countries |
| URI | https://dx.doi.org/10.1016/j.jclepro.2022.135332 https://www.proquest.com/docview/3153858478 |
| Volume | 382 |
| WOSCitedRecordID | wos000997919400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1786 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017074 issn: 0959-6526 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIf2UHRF0w0s0JtB1xIlUToGgYOmKIIebMA5CRRJJTYSKVDsNL-Rn8n3dbhJatw2zaEXwaBIivI8kcPhzBuEPoGGXQrYJpMEtH0SsTIhWSEpEYFkTIYxj5Q0ySbY4WE6n2ffB4MbHwtzecqqKr26ys7_q6ihDIStQ2fvIe62UyiA3yB0uILY4fpvgv9RE1D5jtVQ2mzzQ-0FqiPavHfQkHsmkjNjIfQRU9qbU59UK0MrYWIyLY2AIYW1WSZsoLAlqrVZP2wlftw4Fg_DQjKZDU0Wisb7KG7qvzBsXqmm7b7zB_i2to4AMC6yd6Lc2qpvWMKDA7LPNwqnfEGO1p23wsJ0cgRzGTmp-7aNkPZsG52RMoltTL2fr6nNVuRmXJ23w1pINxYDa5dYjpbwQvAuI3hCOOrq_0q-fWtRbF0VvRfcMnfd5Lqb3HbzAG2HLM5gNt3ePZjMv7bnV2xs-b_9-LvYsc-_Hc-ftKJb-oFReqZP0RMnLbxrUfYMDVT1HD3ucVi-QNct3rDDG9Z4wz28YY833OINA96wwxvu8AY1Je7jDTu84brEHm-mUg9vcANPZrjF20s0259M974Ql-eDiJCFK6K3zEnBYaJQsB-J2FixLBGs5CIuonQs0yiQhYKddyBUSYNI8FIkRUApK8ZhGQv6Cm1VdaVeI5ylcczjMpGByqKApRzWqzQqi0KyQo4p3UGR_59z4UjwdS6W0_yvct5Bo7bZuWWBuatB6oWYO1XWqqg5gPOuph-90HOY6vX5HXyN9foip1o70W4N6Zv7juctetR9X-_Q1qpZq_foobhcLS6aDw69PwE0fdYj |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+dynamic+data+envelopment+analysis+measuring+the+overall+efficiency+and+productivity+changes+of+industry+and+agriculture+in+EU+countries&rft.jtitle=Journal+of+cleaner+production&rft.au=Lu%2C+Ching-Cheng&rft.au=Lin%2C+I-Fang&rft.au=Lin%2C+Tai-Yu&rft.au=Chiu%2C+Yung-ho&rft.date=2023-01-01&rft.issn=0959-6526&rft.volume=382&rft.spage=135332&rft_id=info:doi/10.1016%2Fj.jclepro.2022.135332&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2022_135332 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |