Online virtual network function placement in 5G networks
The placement of network functions in 5G networks, known as the Virtual Network Function-Forwarding Graph Embedding (VNF-FGE) problem, presents challenges in resource allocation, energy efficiency, and real-time service delivery. This paper introduces two reinforcement learning methods, OGA and Hybr...
Gespeichert in:
| Veröffentlicht in: | Computing Jg. 107; H. 5; S. 120 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Vienna
Springer Vienna
01.05.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0010-485X, 1436-5057 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The placement of network functions in 5G networks, known as the Virtual Network Function-Forwarding Graph Embedding (VNF-FGE) problem, presents challenges in resource allocation, energy efficiency, and real-time service delivery. This paper introduces two reinforcement learning methods, OGA and Hybrid-OGA, modeling the VNF-FGE problem as a binary linear programming problem. OGA uses a seq2seq model with actor-critic reinforcement learning for optimal service chain placement, while Hybrid-OGA incorporates a genetic algorithm for refining blocked services placement. These methods address critical issues in 5G network function placement, optimizing VNF placement to minimize energy consumption while maintaining service performance and dependability. We evaluate the methods against First-Fit and CPLEX optimization tools, showing competitive performance in response time, accepted ratio, blocked services, and objective function minimization. Our methods reduce the objective function by 15–40% and improve the accepted ratio by 5–20% compared to CPLEX. With increased request rates, our methods show a 7% decrease in the accepted ratio, while others show a 14–20% decrease. Additionally, our methods increase the objective function by 20–33%, compared to a 48% increase in methods with higher service block rates. |
|---|---|
| AbstractList | The placement of network functions in 5G networks, known as the Virtual Network Function-Forwarding Graph Embedding (VNF-FGE) problem, presents challenges in resource allocation, energy efficiency, and real-time service delivery. This paper introduces two reinforcement learning methods, OGA and Hybrid-OGA, modeling the VNF-FGE problem as a binary linear programming problem. OGA uses a seq2seq model with actor-critic reinforcement learning for optimal service chain placement, while Hybrid-OGA incorporates a genetic algorithm for refining blocked services placement. These methods address critical issues in 5G network function placement, optimizing VNF placement to minimize energy consumption while maintaining service performance and dependability. We evaluate the methods against First-Fit and CPLEX optimization tools, showing competitive performance in response time, accepted ratio, blocked services, and objective function minimization. Our methods reduce the objective function by 15–40% and improve the accepted ratio by 5–20% compared to CPLEX. With increased request rates, our methods show a 7% decrease in the accepted ratio, while others show a 14–20% decrease. Additionally, our methods increase the objective function by 20–33%, compared to a 48% increase in methods with higher service block rates. |
| ArticleNumber | 120 |
| Author | Zali, Zeinab Hashemi, Massoud Reza Esfandyari, Alborz |
| Author_xml | – sequence: 1 givenname: Alborz surname: Esfandyari fullname: Esfandyari, Alborz organization: Department of Electrical and Computer Engineering, Isfahan University of Technology – sequence: 2 givenname: Zeinab surname: Zali fullname: Zali, Zeinab email: zali@iut.ac.ir organization: Department of Electrical and Computer Engineering, Isfahan University of Technology – sequence: 3 givenname: Massoud Reza surname: Hashemi fullname: Hashemi, Massoud Reza organization: Department of Electrical and Computer Engineering, Isfahan University of Technology |
| BookMark | eNp9kE9LwzAYh4NMcJt-AU8Fz9E3_9OjDJ3CYBcFbyFJU-ns0pm0it_eahVvnt7L8_xeeBZoFrsYEDoncEkA1FUGkKAwUIGBcMUxO0JzwpnEAoSaoTkAAcy1eDpBi5x3AECZLudIb2PbxFC8NakfbFvE0L936aWoh-j7povFobU-7EPsiyYWYv0L5FN0XNs2h7Ofu0SPtzcPqzu82a7vV9cb7KmiPdaSCq-JktYrLUrvmRbOlUpY7bwFWfHA60p6aW3NRFlWwEupXE1c7UAxx5boYto9pO51CLk3u25IcXxpGCVEca2kGCk6UT51OadQm0Nq9jZ9GALmq5CZCpmxkPkuZNgosUnKIxyfQ_qb_sf6BOi8alw |
| Cites_doi | 10.1109/COMST.2021.3061981 10.1109/ICCC51575.2020.9345041 10.1007/BF00992696 10.1109/JSAC.2019.2959183 10.1109/COMST.2015.2481183 10.1109/GLOBECOM42002.2020.9322512 10.1109/COMST.2017.2705720 10.1016/j.comcom.2022.06.041 10.1109/ACCESS.2020.2976858 10.1109/CC.2018.8485472 10.1109/LCOMM.2024.3501956 10.3390/fi14120361 10.1109/LWC.2018.2806442 10.3390/app8122614 10.1109/IWQOS52092.2021.9521285 10.1109/COMST.2018.2884835 10.1109/TGCN.2021.3136363 10.1109/ACCESS.2020.2980865 10.1109/WoWMoM54355.2022.00033 10.1109/GLOCOM.2018.8647858 10.1109/TNSM.2021.3055693 10.1109/NFV-SDN.2015.7387426 10.3390/su9101848 10.1109/SPCOM.2012.6290252 10.1007/978-3-642-24455-1_33 10.1016/j.endm.2016.03.028 10.1109/TNSM.2021.3074618 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. May 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. May 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s00607-025-01474-3 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1436-5057 |
| ExternalDocumentID | 10_1007_s00607_025_01474_3 |
| GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFFNX AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAS LLZTM M0C M2O M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ~8M ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AFKWF AHWEU AIXLP CITATION PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c272t-8625c8176ac7859cc385bb975a8bca06d4e4fd6c6aaf3599d04967bf1bfb073b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001473013300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-485X |
| IngestDate | Wed Nov 26 14:52:29 EST 2025 Sat Nov 29 07:54:53 EST 2025 Tue May 27 01:14:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Multi-access edge computing 68 Genetic algorithm 49 Optimal placement Reinforcement learning 5G wireless network technology Network function virtualization 94 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-8625c8176ac7859cc385bb975a8bca06d4e4fd6c6aaf3599d04967bf1bfb073b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3211748765 |
| PQPubID | 48322 |
| ParticipantIDs | proquest_journals_3211748765 crossref_primary_10_1007_s00607_025_01474_3 springer_journals_10_1007_s00607_025_01474_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20250500 2025-05-00 20250501 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 5 year: 2025 text: 20250500 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Computing |
| PublicationTitleAbbrev | Computing |
| PublicationYear | 2025 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | L Ma (1474_CR3) 2018; 15 H Yuan (1474_CR7) 2021; 6 H Yu (1474_CR2) 2017; 9 Q Yuan (1474_CR10) 2020; 8 1474_CR30 1474_CR11 J Holub (1474_CR28) 2018; 7 1474_CR32 1474_CR31 1474_CR16 M Dayarathna (1474_CR23) 2015; 18 1474_CR19 1474_CR18 T Taleb (1474_CR5) 2017; 19 ALÉ Battisti (1474_CR12) 2022; 14 RJ Williams (1474_CR26) 1992; 8 1474_CR1 A Laghrissi (1474_CR4) 2018; 21 R Zhang (1474_CR29) 2020; 8 1474_CR9 Y Siriwardhana (1474_CR6) 2021; 23 1474_CR8 1474_CR21 A Varasteh (1474_CR14) 2021; 18 1474_CR27 1474_CR25 1474_CR24 RA Addad (1474_CR17) 2021; 19 M Shahjalal (1474_CR13) 2022; 193 E Amaldi (1474_CR22) 2016; 52 L Ruiz (1474_CR15) 2018; 8 R Solozabal (1474_CR20) 2019; 38 |
| References_xml | – ident: 1474_CR31 – volume: 23 start-page: 1160 issue: 2 year: 2021 ident: 1474_CR6 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2021.3061981 – ident: 1474_CR21 doi: 10.1109/ICCC51575.2020.9345041 – volume: 8 start-page: 229 year: 1992 ident: 1474_CR26 publication-title: Mach Learn doi: 10.1007/BF00992696 – volume: 38 start-page: 292 issue: 2 year: 2019 ident: 1474_CR20 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2019.2959183 – volume: 18 start-page: 732 issue: 1 year: 2015 ident: 1474_CR23 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2015.2481183 – ident: 1474_CR18 doi: 10.1109/GLOBECOM42002.2020.9322512 – volume: 19 start-page: 1657 issue: 3 year: 2017 ident: 1474_CR5 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2017.2705720 – volume: 193 start-page: 63 year: 2022 ident: 1474_CR13 publication-title: Comput Commun doi: 10.1016/j.comcom.2022.06.041 – volume: 8 start-page: 41649 year: 2020 ident: 1474_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976858 – volume: 15 start-page: 86 issue: 10 year: 2018 ident: 1474_CR3 publication-title: China Commun doi: 10.1109/CC.2018.8485472 – ident: 1474_CR16 doi: 10.1109/LCOMM.2024.3501956 – volume: 14 start-page: 361 issue: 12 year: 2022 ident: 1474_CR12 publication-title: Future Internet doi: 10.3390/fi14120361 – volume: 7 start-page: 638 issue: 4 year: 2018 ident: 1474_CR28 publication-title: IEEE Wireless Commun Lett doi: 10.1109/LWC.2018.2806442 – volume: 8 start-page: 2614 issue: 12 year: 2018 ident: 1474_CR15 publication-title: Appl Sci doi: 10.3390/app8122614 – ident: 1474_CR19 doi: 10.1109/IWQOS52092.2021.9521285 – ident: 1474_CR1 – ident: 1474_CR30 – volume: 21 start-page: 1409 issue: 2 year: 2018 ident: 1474_CR4 publication-title: IEEE Commun Surv Tutorials doi: 10.1109/COMST.2018.2884835 – volume: 6 start-page: 669 issue: 2 year: 2021 ident: 1474_CR7 publication-title: IEEE Trans Green Commun Netw doi: 10.1109/TGCN.2021.3136363 – volume: 8 start-page: 52413 year: 2020 ident: 1474_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980865 – ident: 1474_CR32 – ident: 1474_CR27 doi: 10.1109/WoWMoM54355.2022.00033 – ident: 1474_CR9 doi: 10.1109/GLOCOM.2018.8647858 – volume: 18 start-page: 1524 issue: 2 year: 2021 ident: 1474_CR14 publication-title: IEEE Trans Netw Serv Manage doi: 10.1109/TNSM.2021.3055693 – ident: 1474_CR11 doi: 10.1109/NFV-SDN.2015.7387426 – volume: 9 start-page: 1848 issue: 10 year: 2017 ident: 1474_CR2 publication-title: Sustainability doi: 10.3390/su9101848 – ident: 1474_CR8 doi: 10.1109/SPCOM.2012.6290252 – ident: 1474_CR24 doi: 10.1007/978-3-642-24455-1_33 – ident: 1474_CR25 – volume: 52 start-page: 213 year: 2016 ident: 1474_CR22 publication-title: Electr Notes Dis Math doi: 10.1016/j.endm.2016.03.028 – volume: 19 start-page: 472 issue: 1 year: 2021 ident: 1474_CR17 publication-title: IEEE Trans Netw Serv Manage doi: 10.1109/TNSM.2021.3074618 |
| SSID | ssj0002389 |
| Score | 2.3795323 |
| Snippet | The placement of network functions in 5G networks, known as the Virtual Network Function-Forwarding Graph Embedding (VNF-FGE) problem, presents challenges in... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 120 |
| SubjectTerms | 5G mobile communication Artificial Intelligence Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Energy consumption Genetic algorithms Information Systems Applications (incl.Internet) Linear programming Optimization Performance evaluation Placement Real time Regular Paper Resource allocation Software Engineering Virtual networks Wireless networks |
| Title | Online virtual network function placement in 5G networks |
| URI | https://link.springer.com/article/10.1007/s00607-025-01474-3 https://www.proquest.com/docview/3211748765 |
| Volume | 107 |
| WOSCitedRecordID | wos001473013300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-5057 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002389 issn: 0010-485X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTwMhEJ1o9aAHq1VjtRoO3pTE_WCBozFWD9oYP5reCLBs0svWdGt_v8Cy22j0oOclhLwB3swybwbgnBgWu_RBHJtE4zSnBZbcaFzrrvM0ll4-Nn6goxGbTPhTEIVVTbZ78yTpb-pW7OZKh1Ds2q9at56mOFmHDUt3zDVseH4Zt_evJaHa6bUrSBmZBKnMz3N8paOVj_ntWdSzzbD7v3Xuwk7wLtF1vR32YM2UPeg2nRtQOMg92H5sq7VW-xDqjaLldO7UJKisU8OR4zxnN-QTt9xvRDQtEblrBlQH8Da8fb25x6GjAtYxjRfYhi9Es4hmUlNGuNYJI0pxSiRTWl5Z25i0yDOdSVkkhPPcxg8ZVUWkCmXvApUcQqeclebIpUQxZbi1p9IqLaTizESMUkt2Kopzk_bhogFWvNeFM0RbItlDJCxEwkMkkj4MGuxFOESVSGxwSm1AlZE-XDZYrz7_Ptvx34afwFbszeUsNoDOYv5hTmFTLxfTan7mN9cns3rHng |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT8MgFH7RaaIenE6N06kcvCmJbaHA0Rh1xm0xOpfdSKE02aWade73C7TdotGDnksI-R68773yvgfAOTU8dOWDODSRxiRlGU6E0bjUXackTLx8bNRjgwEfj8VTJQor6mr3-krSe-qF2M21DmHYPb9qw3pGcLQKa8QyluuY__wyWvhfS0Jl0GtXQDgdV1KZn-f4SkfLGPPbtahnm7vm_9a5A9tVdImuy-2wCysmb0GzfrkBVQe5BVv9RbfWYg-qfqNoPpk6NQnKy9Jw5DjP2Q35wi33GxFNckTv6wHFPrze3Q5vurh6UQHrkIUzbNMXqnnA4kQzToXWEadKCUYTrnRyZW1jSJbGOk6SLKJCpDZ_iJnKApUp6wtUdACN_C03h64kiisjrD2VViRLlOAm4IxZslNBmBrShosaWPleNs6QixbJHiJpIZIeIhm1oVNjL6tDVMjIJqfMJlQxbcNljfXy8--zHf1t-BlsdIf9nuw9DB6PYTP0pnPW60BjNv0wJ7Cu57NJMT31G-0TGQvKgg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BQQgGCgVEoYAHNrCgiR07IwIKiFJVAqpulu04UpdQNaG_HztfBQQDYo5lWXe27y5-7x3AKTXcc_BB7BlfYxKxGMvQaFzwriPiyZw-NuqzwYCPx-HwE4s_R7tXT5IFp8GpNCXZxTSKL2rim5MRYdi1YrUpPiPYX4YV4oD0rl5_HtV3sQ1IRQJsV0M4HZe0mZ_n-BqaFvnmtyfSPPL0mv9f8xZsllknuiq2yTYsmaQFzaqjAyoPeAs2nmoV13QHSh1SNJ_MHMsEJQVkHLlY6PyJckCX-72IJgmid9WAdBdee7cv1_e47LSAtce8DNuyhmreZYHUjNNQa59TpUJGJVdaXlqfGRJHgQ6kjH0ahpGtKwKm4q6Klb0jlL8HjeQtMfsOKsWVCa2flVYklirkpssZs0FQdb3IkDacVUYW00JQQ9TSybmJhDWRyE0k_DZ0Kj-I8nClwrdFK7OFVkDbcF7ZffH599kO_jb8BNaGNz3Rfxg8HsK6l3vOOa8DjWz2bo5gVc-zSTo7zvfcB1Hd02Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+virtual+network+function+placement+in+5G+networks&rft.jtitle=Computing&rft.au=Esfandyari%2C+Alborz&rft.au=Zali%2C+Zeinab&rft.au=Hashemi%2C+Massoud+Reza&rft.date=2025-05-01&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=107&rft.issue=5&rft_id=info:doi/10.1007%2Fs00607-025-01474-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00607_025_01474_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon |