Real-time fall detection algorithm based on FFD-AlphaPose and CTR–GCN
With the increasing prevalence of an aging population, falls present a substantial risk to the health of older adults, making fall detection and prevention a primary societal concern. In response to the challenges of inadequate real-time performance and low accuracy in existing methods, this paper p...
Uloženo v:
| Vydáno v: | Journal of real-time image processing Ročník 22; číslo 3; s. 109 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1861-8200, 1861-8219 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the increasing prevalence of an aging population, falls present a substantial risk to the health of older adults, making fall detection and prevention a primary societal concern. In response to the challenges of inadequate real-time performance and low accuracy in existing methods, this paper proposes a lightweight AlphaPose based on FFD-YOLO. Additionally, it incorporates the channel topology refinement graph convolutional network (CTR-GCN) to improve fall detection capabilities. To address the bottlenecks in efficiency and accuracy, this paper first presents an innovative C2fPDR module aimed at enhancing the processing capabilities of long sequence data and expanding the feature receptive field. This approach maintains efficiency while reducing the parameter count, thereby ensuring the stability and accuracy of detection and fully demonstrating the unique advantages of a lightweight design. Furthermore, the neck component has been innovatively restructured by employing a gather-and-distribute (GD) mechanism to optimize the fusion of multi-layer features. Additionally, the integration of MobileNetV4 enhances the backbone network, significantly improving detection speed. The experimental results indicate that the F-FD-YOLO model proposed in this paper reduces the parameter count by 43.0% compared to the original network, increases the frames per second (FPS) by 11.9, achieves a mean average precision (mAP) of 94.3%, and outperforms other classical object detection algorithms that have been adapted for AlphaPose. After embedding AlphaPose, the pose estimation average precision (AP) reaches 74.3%, demonstrating improvements of 0.7, 1.0, and 0.8% compared to the most recent literature (Liang et al., J Supercomput 81:1–20, 2025; Xu et al., Neurocomputing 619:129154, 2025; Miao et al., Adv Neural Inf Process Syst 37:44791–44813, 2025), respectively. The frames per second (FPS) on the GPU reaches 45.8, which is 32.4 FPS faster than OpenPose. When combined with CTR-GCN for action recognition, the precision reaches 98.62%, representing improvements of 8.57, 2.20, and 1.61% over the most recent literature (Cheng et al., Multimed Syst 31:67, 2025; Raza et al., Eng Appl Artif Intell 143:109809, 2025; Yu et al., Pervasive Mob Comput 107:102016, 2025). These experiments validate the substantial advantages of the proposed algorithm for fall detection. |
|---|---|
| AbstractList | With the increasing prevalence of an aging population, falls present a substantial risk to the health of older adults, making fall detection and prevention a primary societal concern. In response to the challenges of inadequate real-time performance and low accuracy in existing methods, this paper proposes a lightweight AlphaPose based on FFD-YOLO. Additionally, it incorporates the channel topology refinement graph convolutional network (CTR-GCN) to improve fall detection capabilities. To address the bottlenecks in efficiency and accuracy, this paper first presents an innovative C2fPDR module aimed at enhancing the processing capabilities of long sequence data and expanding the feature receptive field. This approach maintains efficiency while reducing the parameter count, thereby ensuring the stability and accuracy of detection and fully demonstrating the unique advantages of a lightweight design. Furthermore, the neck component has been innovatively restructured by employing a gather-and-distribute (GD) mechanism to optimize the fusion of multi-layer features. Additionally, the integration of MobileNetV4 enhances the backbone network, significantly improving detection speed. The experimental results indicate that the F-FD-YOLO model proposed in this paper reduces the parameter count by 43.0% compared to the original network, increases the frames per second (FPS) by 11.9, achieves a mean average precision (mAP) of 94.3%, and outperforms other classical object detection algorithms that have been adapted for AlphaPose. After embedding AlphaPose, the pose estimation average precision (AP) reaches 74.3%, demonstrating improvements of 0.7, 1.0, and 0.8% compared to the most recent literature (Liang et al., J Supercomput 81:1–20, 2025; Xu et al., Neurocomputing 619:129154, 2025; Miao et al., Adv Neural Inf Process Syst 37:44791–44813, 2025), respectively. The frames per second (FPS) on the GPU reaches 45.8, which is 32.4 FPS faster than OpenPose. When combined with CTR-GCN for action recognition, the precision reaches 98.62%, representing improvements of 8.57, 2.20, and 1.61% over the most recent literature (Cheng et al., Multimed Syst 31:67, 2025; Raza et al., Eng Appl Artif Intell 143:109809, 2025; Yu et al., Pervasive Mob Comput 107:102016, 2025). These experiments validate the substantial advantages of the proposed algorithm for fall detection. |
| ArticleNumber | 109 |
| Author | Li, Jiayu Zhang, Qingyun Dong, Zhonghua Qiang, Shushan Wang, Yixiang Yang, Xuecun |
| Author_xml | – sequence: 1 givenname: Xuecun surname: Yang fullname: Yang, Xuecun email: 421529497@qq.com organization: Xi’an University of Science and Technology – sequence: 2 givenname: Yixiang surname: Wang fullname: Wang, Yixiang organization: Xi’an University of Science and Technology – sequence: 3 givenname: Zhonghua surname: Dong fullname: Dong, Zhonghua organization: Xi’an University of Science and Technology – sequence: 4 givenname: Jiayu surname: Li fullname: Li, Jiayu organization: Xi’an University of Science and Technology – sequence: 5 givenname: Qingyun surname: Zhang fullname: Zhang, Qingyun organization: Xi’an University of Science and Technology – sequence: 6 givenname: Shushan surname: Qiang fullname: Qiang, Shushan organization: Xi’an University of Science and Technology |
| BookMark | eNp9kM9Kw0AQhxdRsK2-gKeA59X9m02OpdoqFJVSz8s0O21T0qTuplBvvoNv6JO4GtGbpxmG3zczfH1yXDc1EnLB2RVnzFwHzrVWlAlNGU8zQw9HpMezlNNM8Pz4t2fslPRD2DCWmlTqHpnMECralltMllBVicMWi7Zs6gSqVePLdr1NFhDQJXE0Ht_QYbVbw1MTMIHaJaP57OPtfTJ6OCMnkQ94_lMH5Hl8Ox_d0enj5H40nNJCGNHS-AWIZWakRsFQOp2muZLOgAPlFgZyxRUseKadAwMqd8idFoVCnqfAkMsBuez27nzzssfQ2k2z93U8aaVgMs-U0TKmRJcqfBOCx6Xd-XIL_tVyZr-E2U6YjcLstzB7iJDsoBDD9Qr93-p_qE-Z129x |
| Cites_doi | 10.1038/nature19793 10.1109/ICESIT53460.2021.9696459 10.1016/j.neucom.2017.02.082 10.1007/s12652-019-01214-4 10.1016/j.engappai.2024.109809 10.1109/CVPR42600.2020.01079 10.3390/app11010329 10.1016/j.asoc.2014.12.035 10.1007/s11227-025-06923-6 10.3390/s17122864 10.55730/1300-0632.4087 10.1016/j.neucom.2024.129154 10.3390/s18041101 10.1109/JBHI.2014.2319372 10.1155/2020/9532067 10.1109/IWAIT.2018.8369696 10.1109/CVPR42600.2020.00712 10.1007/s00530-024-01665-6 10.1109/CVPR46437.2021.01493 10.1609/aaai.v36i3.20155 10.1109/RTEICT.2017.8256804 10.3390/sym12050744 10.1109/WACV.2017.27 10.55730/1300-0632.4078 10.1109/JSEN.2019.2918690 10.1007/s41095-020-0183-7 10.1155/2022/9962666 10.1109/ICCV.2017.256 10.1109/ICCV48922.2021.01311 10.1109/ICCV48922.2021.01162 10.1109/DDHH.2006.1624792 10.1109/BigDIA51454.2020.00069 10.1109/TBME.2012.2228262 10.1007/978-3-031-20068-7_7 10.1109/ACCESS.2020.2999503 10.1016/j.pmcj.2025.102016 10.1007/s11042-015-2698-y 10.1109/CVPR46437.2021.01306 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11554-025-01687-x |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1861-8219 |
| ExternalDocumentID | 10_1007_s11554_025_01687_x |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China, China grantid: 51804250 |
| GroupedDBID | .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 2VQ AARHV AAYTO AAYXX ABQSL ABRTQ ABULA ACBXY ADHKG AEBTG AEKMD AFFHD AFGCZ AFKRA AGJBK AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- N2Q O9- PHGZM PHGZT PQGLB JQ2 |
| ID | FETCH-LOGICAL-c272t-861a2f8735e20e3d566943d7ada4db7a9414ab185dda7a49de1d52c4e196a0e13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001488251100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1861-8200 |
| IngestDate | Wed Nov 05 06:50:53 EST 2025 Sat Nov 29 07:52:14 EST 2025 Wed Jul 02 02:43:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | FFD-YOLO AlphaPose C2fPDR Fall detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-861a2f8735e20e3d566943d7ada4db7a9414ab185dda7a49de1d52c4e196a0e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3203984753 |
| PQPubID | 2044148 |
| ParticipantIDs | proquest_journals_3203984753 crossref_primary_10_1007_s11554_025_01687_x springer_journals_10_1007_s11554_025_01687_x |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of real-time image processing |
| PublicationTitleAbbrev | J Real-Time Image Proc |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | 1687_CR44 1687_CR45 1687_CR43 X Cheng (1687_CR48) 2025; 31 C Rougier (1687_CR20) 2011; 21 I Abderrazak (1687_CR25) 2020; 6 A Raza (1687_CR49) 2025; 143 S Ashinikumar Singh (1687_CR29) 2024; 32 1687_CR7 1687_CR31 1687_CR32 1687_CR37 1687_CR38 1687_CR35 1687_CR36 X Yu (1687_CR50) 2025; 107 1687_CR30 Z Xu (1687_CR41) 2025; 619 Z Yan (1687_CR18) 2021; 47 J Lee (1687_CR2) 2019; 19 A Goyal (1687_CR34) 2022; 35 S Wang (1687_CR19) 2016; 75 1687_CR39 O Kerdjidj (1687_CR4) 2020; 11 K De Miguel (1687_CR14) 2017; 17 A Sucerquia (1687_CR5) 2018; 18 1687_CR21 1687_CR26 1687_CR27 C Jianrong (1687_CR8) 2021; 41 H Zheng (1687_CR46) 2022; 2022 B Miao (1687_CR42) 2025; 37 X Xi (1687_CR3) 2020; 2020 1687_CR11 1687_CR12 B Mirmahboub (1687_CR22) 2012; 60 S Jiao (1687_CR47) 2024; 10 1687_CR10 1687_CR16 1687_CR13 CB Lin (1687_CR15) 2020; 11 Z-P Bian (1687_CR24) 2014; 19 X Dong (1687_CR1) 2016; 538 W Chen (1687_CR9) 2020; 12 İ Erdogan (1687_CR28) 2024; 32 Y Han (1687_CR33) 2022; 61 M Aslan (1687_CR23) 2015; 37 Y Fan (1687_CR6) 2017; 260 G Xin (1687_CR17) 2020; 20 H Liang (1687_CR40) 2025; 81 |
| References_xml | – volume: 538 start-page: 257 year: 2016 ident: 1687_CR1 publication-title: Nature doi: 10.1038/nature19793 – ident: 1687_CR27 doi: 10.1109/ICESIT53460.2021.9696459 – volume: 260 start-page: 43 year: 2017 ident: 1687_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.082 – volume: 47 start-page: 56 year: 2021 ident: 1687_CR18 publication-title: Opt. Tech. – volume: 11 start-page: 349 year: 2020 ident: 1687_CR4 publication-title: J. Ambient Intell. Human. Comput. doi: 10.1007/s12652-019-01214-4 – volume: 20 start-page: 12500 year: 2020 ident: 1687_CR17 publication-title: Sci. Technol. Eng. – volume: 143 year: 2025 ident: 1687_CR49 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.109809 – ident: 1687_CR35 doi: 10.1109/CVPR42600.2020.01079 – volume: 11 start-page: 329 year: 2020 ident: 1687_CR15 publication-title: Appl. Sci. doi: 10.3390/app11010329 – volume: 37 start-page: 1023 year: 2015 ident: 1687_CR23 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.12.035 – volume: 21 start-page: 611 year: 2011 ident: 1687_CR20 publication-title: Multimed. Tools Appl. – volume: 81 start-page: 1 year: 2025 ident: 1687_CR40 publication-title: J. Supercomput. doi: 10.1007/s11227-025-06923-6 – volume: 17 start-page: 2864 year: 2017 ident: 1687_CR14 publication-title: Sensors doi: 10.3390/s17122864 – ident: 1687_CR38 – volume: 32 start-page: 555 year: 2024 ident: 1687_CR29 publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.55730/1300-0632.4087 – volume: 619 year: 2025 ident: 1687_CR41 publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.129154 – volume: 18 start-page: 1101 year: 2018 ident: 1687_CR5 publication-title: Sensors doi: 10.3390/s18041101 – volume: 19 start-page: 430 year: 2014 ident: 1687_CR24 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2014.2319372 – volume: 2020 start-page: 9532067 year: 2020 ident: 1687_CR3 publication-title: Complexity doi: 10.1155/2020/9532067 – ident: 1687_CR44 doi: 10.1109/IWAIT.2018.8369696 – ident: 1687_CR12 doi: 10.1109/CVPR42600.2020.00712 – volume: 31 start-page: 67 year: 2025 ident: 1687_CR48 publication-title: Multimed. Syst. doi: 10.1007/s00530-024-01665-6 – ident: 1687_CR16 doi: 10.1109/CVPR46437.2021.01493 – ident: 1687_CR11 doi: 10.1609/aaai.v36i3.20155 – volume: 10 year: 2024 ident: 1687_CR47 publication-title: Math. Probl. Eng. – ident: 1687_CR31 – volume: 37 start-page: 44791 year: 2025 ident: 1687_CR42 publication-title: Adv. Neural Inf. Process. Syst. – ident: 1687_CR43 doi: 10.1109/RTEICT.2017.8256804 – volume: 12 start-page: 744 year: 2020 ident: 1687_CR9 publication-title: Symmetry doi: 10.3390/sym12050744 – ident: 1687_CR13 doi: 10.1109/WACV.2017.27 – ident: 1687_CR39 – volume: 32 start-page: 420 issue: 3 year: 2024 ident: 1687_CR28 publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.55730/1300-0632.4078 – volume: 19 start-page: 8293 issue: 18 year: 2019 ident: 1687_CR2 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2019.2918690 – volume: 41 start-page: 583 year: 2021 ident: 1687_CR8 publication-title: Appl. Comput. Sci. – volume: 6 start-page: 247 year: 2020 ident: 1687_CR25 publication-title: Comput. Visual Media doi: 10.1007/s41095-020-0183-7 – volume: 35 start-page: 6789 year: 2022 ident: 1687_CR34 publication-title: Adv. Neural Inf. Process. Syst. – volume: 2022 start-page: 9962666 year: 2022 ident: 1687_CR46 publication-title: Math. Probl. Eng. doi: 10.1155/2022/9962666 – ident: 1687_CR32 – ident: 1687_CR7 doi: 10.1109/ICCV.2017.256 – ident: 1687_CR30 doi: 10.1109/ICCV48922.2021.01311 – volume: 61 start-page: 1 year: 2022 ident: 1687_CR33 publication-title: IEEE Trans. Geosci. Remote Sens. – ident: 1687_CR10 doi: 10.1109/ICCV48922.2021.01162 – ident: 1687_CR21 doi: 10.1109/DDHH.2006.1624792 – ident: 1687_CR26 doi: 10.1109/BigDIA51454.2020.00069 – volume: 60 start-page: 427 year: 2012 ident: 1687_CR22 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2228262 – ident: 1687_CR37 doi: 10.1007/978-3-031-20068-7_7 – ident: 1687_CR45 doi: 10.1109/ACCESS.2020.2999503 – volume: 107 year: 2025 ident: 1687_CR50 publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2025.102016 – volume: 75 start-page: 11603 year: 2016 ident: 1687_CR19 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-015-2698-y – ident: 1687_CR36 doi: 10.1109/CVPR46437.2021.01306 |
| SSID | ssj0067635 |
| Score | 2.3442636 |
| Snippet | With the increasing prevalence of an aging population, falls present a substantial risk to the health of older adults, making fall detection and prevention a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 109 |
| SubjectTerms | Accuracy Adaptability Algorithms Artificial neural networks Computer Graphics Computer Science Fall detection False alarms Frames per second Human body Image Processing and Computer Vision Methods Multilayers Multimedia Information Systems Neural networks Object recognition Older people Parameters Pattern Recognition Pose estimation Real time Signal,Image and Speech Processing Single persons Topology |
| Title | Real-time fall detection algorithm based on FFD-AlphaPose and CTR–GCN |
| URI | https://link.springer.com/article/10.1007/s11554-025-01687-x https://www.proquest.com/docview/3203984753 |
| Volume | 22 |
| WOSCitedRecordID | wos001488251100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1861-8219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: RSV dateStart: 20060301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVQYWChPEWhIA9sYCmJnYfHqpAyoKoqBXWLnNwbQCopagJi5B_4Q74EO00UgWCANYks69jX5zj2vYeQEy_hWkS4nMXgu0wIFCx2A858K41jj1sS03Kkr_zhMJhO5ahKCsvr2-71kWS5UjfJbob6mLFf1TJFh4ZWjqua7gJj2DC-vq3XX8-UWDPbrMCzmeY3q0qV-bmNr3TUaMxvx6Il24Tt__Vzk2xU6pL2ltNhi6xgtk3atXMDrQJ5hwzGWh8y4ytPUzWbUcCivJKVUTW7my8eivtHavgNqH4UhuesZ1JyR_McqcqA9ifjj7f3QX-4S27Ci0n_klWWCixxfKdgGhPlpIHPXXQs5KDFnBQcfAVKQOwrKWyhYs3hAMpXQgLa4DqJQB2oykKb75FWNs9wn1BPAUpQKE1FNrBVIC0IbERTQ0vvc9wOOa2RjZ6WlTOipkaywSjSGEUlRtFrh3Rr8KMqivKIOxaXmj5d3iFnNdjN699bO_jb54dk3SnHy_xc6ZJWsXjGI7KWvBQP-eK4nF2f7UjI9Q |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA4yBb04P3E6NQdvGmibtGmOY9pNnGXMKbuFdEl1MDtZq3j0P_gP_SUmXUtR9KDXtoTwJG-eJ03e5wXgxBtjLSJcjCJJXUSIIihyfYyoFUeRhy2m4nykezQM_dGI9YuksLS87V4eSeYrdZXsZqgPmfKrWqbo0NDKcZloxjKO-YObu3L99YzFmtlm-Z6NNL9ZRarMz218paNKY347Fs3ZJqj_r58bYL1Ql7C1mA6bYEklW6BeVm6ARSBvg85A60Nk6srDWEynUKosv5KVQDG9n80n2cMjNPwmoX4UBOeoZVJy-7NUQZFI2B4OPt7eO-1wB9wGF8N2FxUlFdDYoU6GNCbCiX2KXeVYCkst5hjBkgopiIyoYMQmItIcLqWggjCpbOk6Y6J0oApL2XgX1JJZovYA9IRUTArFjCObtIXPLOnbShkPLb3PcRvgtESWPy2cM3jlkWww4hojnmPEXxugWYLPiyhKOXYszDR9urgBzkqwq9e_t7b_t8-PwWp3eN3jvcvw6gCsOfnYmR8tTVDL5s_qEKyMX7JJOj_KZ9onYtvL2Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1ERbxYP7FadQ_edGmS3XzssbSmiiWUWqW3sOlstFDT0kbx6H_wH_pL3E0ToqIH8ZqEJczs5L3JzrxB6NQZUkUibEoicG3CmGQksj1KXCOOIocaXMaZpztuEHiDAe9-6uLPqt2LI8lFT4NWaUrS-hTietn4pmGQ6FGsirKoMFEscoXpQnqdr9_cFd9iR8ut6ZTLc0yisM7I22Z-XuMrNJV889sRaYY8fuX_77yJNnLWiRuLbbKFlmSyjSrFRAecB_gOavcUbyR63jyOxXiMQaZZqVaCxfh-MhulD49Y4x5gdcn3W6ShW3W7k7nEIgHc7PfeX9_azWAX3foX_eYlyUctkKHlWilR9hFW7LnUlpYhKSiSxxkFV4BgELmCM5OJSGE7gHAF4yBNsK0hkyqAhSFNuoeWk0ki9xF2BEgOQnKt1Aam8LgBniml1tZS-Y9dRWeFlcPpQlEjLLWTtY1CZaMws1H4UkW1whFhHl3zkFoG5QpWbVpF54Xhy9u_r3bwt8dP0Fq35Yedq-D6EK1bmev0_5caWk5nT_IIrQ6f09F8dpxtug-ra9S9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+fall+detection+algorithm+based+on+FFD-AlphaPose+and+CTR%E2%80%93GCN&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Yang%2C+Xuecun&rft.au=Wang%2C+Yixiang&rft.au=Dong%2C+Zhonghua&rft.au=Li%2C+Jiayu&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=22&rft.issue=3&rft.spage=109&rft_id=info:doi/10.1007%2Fs11554-025-01687-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon |