Runoff prediction of urban stream based on the discharge of pump stations using improved multi-layer perceptron applying new optimizers combined with a harmony search

•An improved multi-layer perceptron using new optimizers combined with a meta-heuristic optimization algorithm (IMLP) was developed.•Runoff Inflow was predicted based on the rainfall and discharge of pump stations using IMLP.•Normalization and correlation analysis was applied to conduct data pre-pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) Jg. 615; S. 128708
1. Verfasser: Lee, Eui Hoon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2022
Schlagworte:
ISSN:0022-1694, 1879-2707
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •An improved multi-layer perceptron using new optimizers combined with a meta-heuristic optimization algorithm (IMLP) was developed.•Runoff Inflow was predicted based on the rainfall and discharge of pump stations using IMLP.•Normalization and correlation analysis was applied to conduct data pre-processing.•Root mean square error (RMSE) and mean average error (MAE) were applied to calculate the accuracy of the predicted runoff.•Historical rainfall events from 2010 to 2020 were used to compare MLP with IMLP. Prediction using neural networks is applied in various fields, including hydrology and water resource management. In the learning process, an optimizer is used to determine the relationship (weights and biases) between the input and output data to lower the value of the loss function. Existing optimizers rely absolutely on the relationship that are initially generated and have the probability to converge to a local optimum. Additionally, since there is no structure for storing information about the previously generated correlation, there is a probability that the optimal weights and biases could not be found even when learning proceeds. It is necessary to apply a meta-heuristic optimization algorithm that can consider both global/local search and has a structure that can store the previously generated solution. In this study, a new optimizer was combined with a harmony search (HS), to improve existing optimizers. To test the performance of the improved multi-layer perceptron using the new optimizer (IMLP), the runoff of the Dorim stream in Seoul was predicted. The rainfall and the discharge of pump stations were constructed as input data, and data preprocessing was performed by normalization and correlation coefficients. The IMLP showed improved accuracy and could be used to manage urban streams.
AbstractList Prediction using neural networks is applied in various fields, including hydrology and water resource management. In the learning process, an optimizer is used to determine the relationship (weights and biases) between the input and output data to lower the value of the loss function. Existing optimizers rely absolutely on the relationship that are initially generated and have the probability to converge to a local optimum. Additionally, since there is no structure for storing information about the previously generated correlation, there is a probability that the optimal weights and biases could not be found even when learning proceeds. It is necessary to apply a meta-heuristic optimization algorithm that can consider both global/local search and has a structure that can store the previously generated solution. In this study, a new optimizer was combined with a harmony search (HS), to improve existing optimizers. To test the performance of the improved multi-layer perceptron using the new optimizer (IMLP), the runoff of the Dorim stream in Seoul was predicted. The rainfall and the discharge of pump stations were constructed as input data, and data preprocessing was performed by normalization and correlation coefficients. The IMLP showed improved accuracy and could be used to manage urban streams.
•An improved multi-layer perceptron using new optimizers combined with a meta-heuristic optimization algorithm (IMLP) was developed.•Runoff Inflow was predicted based on the rainfall and discharge of pump stations using IMLP.•Normalization and correlation analysis was applied to conduct data pre-processing.•Root mean square error (RMSE) and mean average error (MAE) were applied to calculate the accuracy of the predicted runoff.•Historical rainfall events from 2010 to 2020 were used to compare MLP with IMLP. Prediction using neural networks is applied in various fields, including hydrology and water resource management. In the learning process, an optimizer is used to determine the relationship (weights and biases) between the input and output data to lower the value of the loss function. Existing optimizers rely absolutely on the relationship that are initially generated and have the probability to converge to a local optimum. Additionally, since there is no structure for storing information about the previously generated correlation, there is a probability that the optimal weights and biases could not be found even when learning proceeds. It is necessary to apply a meta-heuristic optimization algorithm that can consider both global/local search and has a structure that can store the previously generated solution. In this study, a new optimizer was combined with a harmony search (HS), to improve existing optimizers. To test the performance of the improved multi-layer perceptron using the new optimizer (IMLP), the runoff of the Dorim stream in Seoul was predicted. The rainfall and the discharge of pump stations were constructed as input data, and data preprocessing was performed by normalization and correlation coefficients. The IMLP showed improved accuracy and could be used to manage urban streams.
ArticleNumber 128708
Author Lee, Eui Hoon
Author_xml – sequence: 1
  givenname: Eui Hoon
  surname: Lee
  fullname: Lee, Eui Hoon
  email: hydrohydro@cbnu.ac.kr
  organization: School of Civil Engineering, Chungbuk National University, 28644 Cheongju, South Korea
BookMark eNqFkc1q3TAQhUVJoTdpH6GgZTe-1c-1ZdNFKaFpC4FAaddClsexLtZPJTnBfaA-Z2WcVTbRZhZzviPmnEt04bwDhN5TcqSENh_Px_O0DtHPR0YYO1LWCtK-Qgfaiq5igogLdCBlU9GmO71BlymdSXmcnw7o38_F-XHEIcJgdDbeYT_iJfbK4ZQjKIt7lWDAZZEnwINJelLxHjZZWGwoKrVhCS_JuHtsbIj-oQB2mbOpZrVCxAGihpBjMVEhzOsmdPCIfcjGmr8QE9be9sYV7tHkCStcPrHerTiBinp6i16Pak7w7mleod83X39df69u7779uP5yW2kmWK4EiF5zUKBVDc3IgbU1qIYNI5yA17oXtRjarlG076AEw5p2GISqec-JpqzjV-jD7luO-LNAytKWg2GelQO_JMlpzVtKas6K9NMu1dGnFGGU2uxR5KjMLCmRWzvyLJ_akVs7cm-n0PUzOkRjVVxf5D7vHJQUHgxEmbQBp0t7EXSWgzcvOPwH-d-0ww
CitedBy_id crossref_primary_10_1016_j_envsoft_2025_106380
crossref_primary_10_1016_j_jhydrol_2024_131041
crossref_primary_10_3390_w15203559
crossref_primary_10_1016_j_jhydrol_2023_129460
crossref_primary_10_1016_j_jhydrol_2024_132137
crossref_primary_10_1016_j_gsd_2023_101061
crossref_primary_10_1016_j_jhydrol_2024_131996
crossref_primary_10_2166_hydro_2023_216
crossref_primary_10_2166_hydro_2024_038
crossref_primary_10_1016_j_jclepro_2024_141254
Cites_doi 10.1109/ACCESS.2020.2974406
10.1016/j.jhydrol.2020.124710
10.1023/A:1022602019183
10.15244/pjoes/81557
10.1007/s11269-019-2183-x
10.1016/j.jhydrol.2020.124631
10.1016/j.jhydrol.2019.05.087
10.1029/2018WR024463
10.1007/s00477-018-1560-y
10.1088/1748-9326/ab4d5e
10.1080/02626667.2019.1595624
10.3390/w14010099
10.1016/j.eswa.2008.05.024
10.1037/h0042519
10.1016/j.jhydrol.2018.08.050
10.1007/s00477-020-01766-4
10.18178/ijesd.2019.10.10.1190
10.1029/2019WR025326
10.5194/hess-22-6005-2018
10.1016/j.engappai.2015.07.019
10.1016/j.engappai.2012.05.023
10.1177/003754970107600201
10.2166/wcc.2017.307
10.1016/j.jhydrol.2020.124776
10.1016/j.jhydrol.2020.124783
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2022.128708
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2022_128708
S0022169422012781
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c272t-7e7bc3eaeca5e6f3e285ea62dfe4e35cb757d896a1b9e707268dd7a53b30c1293
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000898076000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sat Sep 27 16:30:01 EDT 2025
Tue Nov 18 21:55:26 EST 2025
Sat Nov 29 07:29:11 EST 2025
Fri Feb 23 02:39:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Meta-heuristic optimization algorithm
Urban stream
Harmony search
Runoff prediction
Combined optimizer
Improved multi-layer perceptron
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c272t-7e7bc3eaeca5e6f3e285ea62dfe4e35cb757d896a1b9e707268dd7a53b30c1293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153810532
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153810532
crossref_citationtrail_10_1016_j_jhydrol_2022_128708
crossref_primary_10_1016_j_jhydrol_2022_128708
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_128708
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References He, Luo, Zuo, Xie (b0035) 2019; 33
Worland, Steinschneider, Asquith, Knight, Wieczorek (b0105) 2019; 55
Damavandi, Shah, Stampoulis, Wei, Boscovic, Sabo (b0010) 2019; 10
Ebtehaj, Sammen, Sidek, Malik, Sihag, Al-Janabi, Chau, Bonakdari (b0015) 2021; 15
Fu, Fan, Ding, Salih, Al-Ansari, Yaseen (b0020) 2020; 8
Ren, Liu, Niu, Lei, Zhang (b0085) 2020; 585
Lee, Lee (b0065) 2022; 14
Wu, Chau (b0110) 2013; 26
Hu, Fang, Pain, Navon (b0040) 2019; 575
Goldberg, Holland (b0030) 1988; 3
Rosenblatt (b0090) 1958; 65
Zhu, Luo, Yuan, Xu (b0135) 2020; 34
Nguyen, Bae (b0075) 2020; 584
Taormina, Chau (b0100) 2015; 45
Yuan, Chen, Lei, Yuan, Muhammad Adnan (b0125) 2018; 32
Zhang, Lin, Peng, Wang, Yang, Sorooshian, Liu, Zhuang (b0130) 2018; 565
Zuo, Luo, Wang, Lian, He (b0140) 2020; 585
Kao, Zhou, Chang, Chang (b0045) 2020; 583
Kratzert, Klotz, Brenner, Schulz, Herrnegger (b0055) 2018; 22
Bui, Hoang, Martínez-Álvarez, Ngo, Hoa, Pham, Samui, Costache (b0005) 2020; 701
Kaya, Tayfur, Gungor (b0050) 2019; 10
Geem, Kim, Loganathan (b0025) 2001; 76
Qin, Liang, Chen, Lei, Kang (b0080) 2018; 28
Xiang, Yan, Demir (b0115) 2020; 56
Yang, Sun, Gentine, Liu, Wang, Yin, Du, Liu (b0120) 2019; 14
Kumar, Singh, Samui, Jha (b0060) 2019; 64
Sedki, Ouazar, El Mazoudi (b0095) 2009; 36
Wu (10.1016/j.jhydrol.2022.128708_b0110) 2013; 26
Fu (10.1016/j.jhydrol.2022.128708_b0020) 2020; 8
Worland (10.1016/j.jhydrol.2022.128708_b0105) 2019; 55
Hu (10.1016/j.jhydrol.2022.128708_b0040) 2019; 575
Qin (10.1016/j.jhydrol.2022.128708_b0080) 2018; 28
Kaya (10.1016/j.jhydrol.2022.128708_b0050) 2019; 10
Yang (10.1016/j.jhydrol.2022.128708_b0120) 2019; 14
Zuo (10.1016/j.jhydrol.2022.128708_b0140) 2020; 585
Kumar (10.1016/j.jhydrol.2022.128708_b0060) 2019; 64
Damavandi (10.1016/j.jhydrol.2022.128708_b0010) 2019; 10
Zhang (10.1016/j.jhydrol.2022.128708_b0130) 2018; 565
Ebtehaj (10.1016/j.jhydrol.2022.128708_b0015) 2021; 15
Rosenblatt (10.1016/j.jhydrol.2022.128708_b0090) 1958; 65
Geem (10.1016/j.jhydrol.2022.128708_b0025) 2001; 76
Taormina (10.1016/j.jhydrol.2022.128708_b0100) 2015; 45
Kratzert (10.1016/j.jhydrol.2022.128708_b0055) 2018; 22
Lee (10.1016/j.jhydrol.2022.128708_b0065) 2022; 14
Xiang (10.1016/j.jhydrol.2022.128708_b0115) 2020; 56
Nguyen (10.1016/j.jhydrol.2022.128708_b0075) 2020; 584
Sedki (10.1016/j.jhydrol.2022.128708_b0095) 2009; 36
He (10.1016/j.jhydrol.2022.128708_b0035) 2019; 33
Bui (10.1016/j.jhydrol.2022.128708_b0005) 2020; 701
Zhu (10.1016/j.jhydrol.2022.128708_b0135) 2020; 34
Ren (10.1016/j.jhydrol.2022.128708_b0085) 2020; 585
Yuan (10.1016/j.jhydrol.2022.128708_b0125) 2018; 32
Kao (10.1016/j.jhydrol.2022.128708_b0045) 2020; 583
Goldberg (10.1016/j.jhydrol.2022.128708_b0030) 1988; 3
References_xml – volume: 10
  start-page: 360
  year: 2019
  end-page: 372
  ident: b0050
  article-title: Predicting flood plain inundation for natural channels having no upstream gauged stations
  publication-title: J. Water Clim. Change
– volume: 8
  start-page: 32632
  year: 2020
  end-page: 32651
  ident: b0020
  article-title: Deep learning data-intelligence model based on adjusted forecasting window scale: application in daily streamflow simulation
  publication-title: IEEE Access
– volume: 701
  year: 2020
  ident: b0005
  article-title: A novel deep learning neural network approach for predicting flash flood susceptibility: a case study at a high frequency tropical storm area
  publication-title: Sci. Total Environ.
– volume: 14
  year: 2019
  ident: b0120
  article-title: Evaluation and machine learning improvement of global hydrological model-based flood simulations
  publication-title: Environ. Res. Lett.
– volume: 55
  start-page: 6850
  year: 2019
  end-page: 6868
  ident: b0105
  article-title: Prediction and inference of flow duration curves using multioutput neural networks
  publication-title: Water Resour. Res.
– volume: 583
  year: 2020
  ident: b0045
  article-title: Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting
  publication-title: J. Hydrol.
– volume: 22
  start-page: 6005
  year: 2018
  end-page: 6022
  ident: b0055
  article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 584
  year: 2020
  ident: b0075
  article-title: Correcting mean areal precipitation forecasts to improve urban flooding predictions by using long short-term memory network
  publication-title: J. Hydrol.
– volume: 65
  start-page: 386
  year: 1958
  end-page: 408
  ident: b0090
  article-title: The Perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
– volume: 575
  start-page: 911
  year: 2019
  end-page: 920
  ident: b0040
  article-title: Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method
  publication-title: J. Hydrol.
– volume: 15
  start-page: 1343
  year: 2021
  end-page: 1361
  ident: b0015
  article-title: Prediction of daily water level using new hybridized GS-GMDH and ANFIS-FCM models
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 36
  start-page: 4523
  year: 2009
  end-page: 4527
  ident: b0095
  article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting
  publication-title: Expert Syst. Appl.
– volume: 32
  start-page: 2199
  year: 2018
  end-page: 2212
  ident: b0125
  article-title: Monthly runoff forecasting based on LSTM–ALO model
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 10
  start-page: 294
  year: 2019
  end-page: 300
  ident: b0010
  article-title: Accurate prediction of streamflow using long short-term memory network: a case study in the Brazos River Basin in Texas
  publication-title: Int. J. Environ. Sci. Dev.
– volume: 585
  year: 2020
  ident: b0140
  article-title: Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting
  publication-title: J. Hydrol.
– volume: 64
  start-page: 690
  year: 2019
  end-page: 700
  ident: b0060
  article-title: Forecasting monthly precipitation using sequential modelling
  publication-title: Hydrol. Sci. J.
– volume: 34
  start-page: 1313
  year: 2020
  end-page: 1329
  ident: b0135
  article-title: An improved long short-term memory network for streamflow forecasting in the upper Yangtze River
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 56
  start-page: e2019
  year: 2020
  ident: b0115
  article-title: A rainfall-runoff model with LSTM-based sequence-to-sequence learning
  publication-title: Water Resour. Res.
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: b0025
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation.
– volume: 33
  start-page: 1571
  year: 2019
  end-page: 1590
  ident: b0035
  article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks
  publication-title: Water Resour. Manag.
– volume: 3
  start-page: 95
  year: 1988
  end-page: 99
  ident: b0030
  article-title: Genetic algorithms and machine learning
  publication-title: Mach. Learn.
– volume: 565
  start-page: 720
  year: 2018
  end-page: 736
  ident: b0130
  article-title: Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm
  publication-title: J. Hydrol.
– volume: 14
  start-page: 99
  year: 2022
  ident: b0065
  article-title: Runoff prediction based on the discharge of pump stations in an urban stream using a modified multi-layer Perceptron combined with meta-heuristic optimization
  publication-title: Water
– volume: 26
  start-page: 997
  year: 2013
  end-page: 1007
  ident: b0110
  article-title: Prediction of rainfall time series using modular soft computingmethods
  publication-title: Eng. Appl. Artif. Intell.
– volume: 585
  year: 2020
  ident: b0085
  article-title: Real-time water level prediction of cascaded channels based on multilayer perception and recurrent neural network
  publication-title: J. Hydrol.
– volume: 28
  start-page: 795
  year: 2018
  end-page: 802
  ident: b0080
  article-title: Simulating and predicting of hydrological time series based on TensorFlow deep learning
  publication-title: Pol. J. Environ. Stud.
– volume: 45
  start-page: 429
  year: 2015
  end-page: 440
  ident: b0100
  article-title: ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS
  publication-title: Eng. Appl. Artif. Intell.
– volume: 8
  start-page: 32632
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128708_b0020
  article-title: Deep learning data-intelligence model based on adjusted forecasting window scale: application in daily streamflow simulation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974406
– volume: 584
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128708_b0075
  article-title: Correcting mean areal precipitation forecasts to improve urban flooding predictions by using long short-term memory network
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124710
– volume: 3
  start-page: 95
  year: 1988
  ident: 10.1016/j.jhydrol.2022.128708_b0030
  article-title: Genetic algorithms and machine learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022602019183
– volume: 28
  start-page: 795
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128708_b0080
  article-title: Simulating and predicting of hydrological time series based on TensorFlow deep learning
  publication-title: Pol. J. Environ. Stud.
  doi: 10.15244/pjoes/81557
– volume: 33
  start-page: 1571
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128708_b0035
  article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-019-2183-x
– volume: 583
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128708_b0045
  article-title: Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124631
– volume: 575
  start-page: 911
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128708_b0040
  article-title: Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.05.087
– volume: 55
  start-page: 6850
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128708_b0105
  article-title: Prediction and inference of flow duration curves using multioutput neural networks
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR024463
– volume: 32
  start-page: 2199
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128708_b0125
  article-title: Monthly runoff forecasting based on LSTM–ALO model
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-1560-y
– volume: 14
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128708_b0120
  article-title: Evaluation and machine learning improvement of global hydrological model-based flood simulations
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab4d5e
– volume: 64
  start-page: 690
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128708_b0060
  article-title: Forecasting monthly precipitation using sequential modelling
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2019.1595624
– volume: 14
  start-page: 99
  year: 2022
  ident: 10.1016/j.jhydrol.2022.128708_b0065
  article-title: Runoff prediction based on the discharge of pump stations in an urban stream using a modified multi-layer Perceptron combined with meta-heuristic optimization
  publication-title: Water
  doi: 10.3390/w14010099
– volume: 36
  start-page: 4523
  year: 2009
  ident: 10.1016/j.jhydrol.2022.128708_b0095
  article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.05.024
– volume: 65
  start-page: 386
  year: 1958
  ident: 10.1016/j.jhydrol.2022.128708_b0090
  article-title: The Perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 565
  start-page: 720
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128708_b0130
  article-title: Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.08.050
– volume: 34
  start-page: 1313
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128708_b0135
  article-title: An improved long short-term memory network for streamflow forecasting in the upper Yangtze River
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-020-01766-4
– volume: 10
  start-page: 294
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128708_b0010
  article-title: Accurate prediction of streamflow using long short-term memory network: a case study in the Brazos River Basin in Texas
  publication-title: Int. J. Environ. Sci. Dev.
  doi: 10.18178/ijesd.2019.10.10.1190
– volume: 56
  start-page: e2019
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128708_b0115
  article-title: A rainfall-runoff model with LSTM-based sequence-to-sequence learning
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR025326
– volume: 22
  start-page: 6005
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128708_b0055
  article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– volume: 45
  start-page: 429
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128708_b0100
  article-title: ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.07.019
– volume: 26
  start-page: 997
  issue: 3
  year: 2013
  ident: 10.1016/j.jhydrol.2022.128708_b0110
  article-title: Prediction of rainfall time series using modular soft computingmethods
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.05.023
– volume: 76
  start-page: 60
  year: 2001
  ident: 10.1016/j.jhydrol.2022.128708_b0025
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation.
  doi: 10.1177/003754970107600201
– volume: 15
  start-page: 1343
  issue: 1
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128708_b0015
  article-title: Prediction of daily water level using new hybridized GS-GMDH and ANFIS-FCM models
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 10
  start-page: 360
  issue: 2
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128708_b0050
  article-title: Predicting flood plain inundation for natural channels having no upstream gauged stations
  publication-title: J. Water Clim. Change
  doi: 10.2166/wcc.2017.307
– volume: 585
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128708_b0140
  article-title: Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124776
– volume: 701
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128708_b0005
  article-title: A novel deep learning neural network approach for predicting flash flood susceptibility: a case study at a high frequency tropical storm area
  publication-title: Sci. Total Environ.
– volume: 585
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128708_b0085
  article-title: Real-time water level prediction of cascaded channels based on multilayer perception and recurrent neural network
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124783
SSID ssj0000334
Score 2.4643915
Snippet •An improved multi-layer perceptron using new optimizers combined with a meta-heuristic optimization algorithm (IMLP) was developed.•Runoff Inflow was...
Prediction using neural networks is applied in various fields, including hydrology and water resource management. In the learning process, an optimizer is used...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128708
SubjectTerms algorithms
Combined optimizer
Harmony search
Improved multi-layer perceptron
Meta-heuristic optimization algorithm
prediction
probability
rain
runoff
Runoff prediction
streams
Urban stream
water management
Title Runoff prediction of urban stream based on the discharge of pump stations using improved multi-layer perceptron applying new optimizers combined with a harmony search
URI https://dx.doi.org/10.1016/j.jhydrol.2022.128708
https://www.proquest.com/docview/3153810532
Volume 615
WOSCitedRecordID wos000898076000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1fb9MwEMCtsiHBC-KvNv7JSLxVKY2dxMljhQoDoQmhgfoWOY4tWrVJ1TXTti-xb8Hn5C62mzIGYw-8RFEau07uF_t8vjsT8lqlhSyzaBgURg1hglKoIC2LJNChNEzqYVS2eyx9-yQOD9PJJPvc6134WJiTuaiq9PQ0W_5XUcM1EDaGzt5A3JtK4QKcg9DhCGKH4z8J_ktT1cZg8H85VV4fbFYFfMgYGCIXfRy5SrdKgCs0bbak1nawBOGidcG6xzWtHWHamh2gQOt7GMwlKOmY7Rj9YVboywx6bBsrVWEIDPRAi-k5RgXDs8Gs23u3yz7myK6rs_6W-ex3pfj7WbmyWaFA8x0tMItDichuzBXOcWjcTPsHtUPKGS0Y23IA6YIIwsTub-w74iSMt7rSEJdg0yt7eWtwmA1mtlED_IdBd_-vWbUvjXYbH0Tv3jbLXTU5VpPbam6RXSbiDLrJ3dGH8eRjN7hzHvkE9Nj-LijszZXt-ZO6c2ngb7WZo_vknnvjdGTxeUB6unpI7rzXLoH5I_LDYkQ7jGhtaIsRtRjRFiMKPwBGdIMR3oYYUY8RbTGiHiO6hRHtMKIeIwoY0Q4j6jGiiBGV1GFELUaPydd346O3B4Hb0yNQTLB1ILQoFNdSKxnrxHDN0ljLhJVGR5rHqhCxKNMskWGRaTEULEnLUsiYF3yoUDd9QnaqutJ7hOLUmJtCa6NYpIokDQ3MxZVhIUwSODf7JPKvPlcu4T3uuzLP_yr6fTLYFFvajC_XFUi9XHOntlp1NAderyv6ynOQQ7eOa3Wy0nVznHPURELctuXpTdvzjNztPrnnZGe9avQLcludrKfHq5cO6J9Gi9ML
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Runoff+prediction+of+urban+stream+based+on+the+discharge+of+pump+stations+using+improved+multi-layer+perceptron+applying+new+optimizers+combined+with+a+harmony+search&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Lee%2C+Eui+Hoon&rft.date=2022-12-01&rft.issn=0022-1694&rft.volume=615&rft.spage=128708&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.128708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2022_128708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon