A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder

The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for detecting a wide range of anomalies. However, the fusion of high-dimensional and heterogeneous modalities is a challenging problem for model-based...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 3; no. 3; pp. 1544 - 1551
Main Authors: Daehyung Park, Hoshi, Yuuna, Kemp, Charles C.
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for detecting a wide range of anomalies. However, the fusion of high-dimensional and heterogeneous modalities is a challenging problem for model-based anomaly detection. We introduce a long short-term memory-based variational autoencoder (LSTM-VAE) that fuses signals and reconstructs their expected distribution by introducing a progress-based varying prior. Our LSTM-VAE-based detector reports an anomaly when a reconstruction-based anomaly score is higher than a state-based threshold. For evaluations with 1555 robot-assisted feeding executions, including 12 representative types of anomalies, our detector had a higher area under the receiver operating characteristic curve of 0.8710 than 5 other baseline detectors from the literature. We also show the variational autoencoding and state-based thresholding are effective in detecting anomalies from 17 raw sensory signals without significant feature engineering effort.
AbstractList The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for detecting a wide range of anomalies. However, the fusion of high-dimensional and heterogeneous modalities is a challenging problem for model-based anomaly detection. We introduce a long short-term memory-based variational autoencoder (LSTM-VAE) that fuses signals and reconstructs their expected distribution by introducing a progress-based varying prior. Our LSTM-VAE-based detector reports an anomaly when a reconstruction-based anomaly score is higher than a state-based threshold. For evaluations with 1555 robot-assisted feeding executions, including 12 representative types of anomalies, our detector had a higher area under the receiver operating characteristic curve of 0.8710 than 5 other baseline detectors from the literature. We also show the variational autoencoding and state-based thresholding are effective in detecting anomalies from 17 raw sensory signals without significant feature engineering effort.
Author Daehyung Park
Kemp, Charles C.
Hoshi, Yuuna
Author_xml – sequence: 1
  surname: Daehyung Park
  fullname: Daehyung Park
  email: deric.park@gatech.edu
  organization: Healthcare Robot. Lab., Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 2
  givenname: Yuuna
  surname: Hoshi
  fullname: Hoshi, Yuuna
  email: youna.hoshi@gmail.com
  organization: Healthcare Robot. Lab., Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 3
  givenname: Charles C.
  surname: Kemp
  fullname: Kemp, Charles C.
  email: charlie.kemp@bme.gatech.edu
  organization: Healthcare Robot. Lab., Georgia Inst. of Technol., Atlanta, GA, USA
BookMark eNp9UE1Lw0AQXaSCtfYueAl4Tt2vZLPHWK0KLUJtvYbNZiJb0mzd3R76701sEfHgYT5g5r158y7RoLUtIHRN8IQQLO_my3xCMckmNMOEi-QMDSkTImYiTQe_-gs09n6DMSYJFUwmQ1Tl0WLfBLO1lWqivLVb1RyiBwigg3VR3cXSljbEuffGB6iiGUBl2o9o7fus2mj-tlrE98p3s3fljArGtj3XPlhota3AXaHzWjUexqc6QuvZ42r6HM9fn16m-TzWVNAQCw1AaiYhlZwLzSSBRCS8ZDxNMsJqAJ7ikmohSo1rWTFGcMYqrkvBWSIIG6HbI-_O2c89-FBs7N51YnxBqZRM0IT1W_i4pZ313kFd7JzZKncoCC56O4vOzqK3szjZ2UHSPxBtwvejwSnT_Ae8OQINAPzcyaiQvNPyBfAggmo
CODEN IRALC6
CitedBy_id crossref_primary_10_3233_JIFS_224416
crossref_primary_10_1016_j_knosys_2023_110936
crossref_primary_10_3390_s25061849
crossref_primary_10_1007_s11227_024_06694_6
crossref_primary_10_3390_app15052861
crossref_primary_10_1016_j_jii_2023_100490
crossref_primary_10_1109_TNSE_2025_3555764
crossref_primary_10_1088_2631_7990_adbd98
crossref_primary_10_1016_j_buildenv_2020_107212
crossref_primary_10_1016_j_cose_2022_102652
crossref_primary_10_1007_s11760_025_04305_2
crossref_primary_10_3389_frobt_2020_578805
crossref_primary_10_1016_j_inffus_2024_102906
crossref_primary_10_1016_j_ress_2023_109404
crossref_primary_10_1016_j_neucom_2025_130611
crossref_primary_10_3390_e27090939
crossref_primary_10_1016_j_ymssp_2025_112863
crossref_primary_10_3390_en16207156
crossref_primary_10_1016_j_knosys_2024_112167
crossref_primary_10_1109_TAES_2024_3463629
crossref_primary_10_3390_drones9060408
crossref_primary_10_1109_ACCESS_2022_3165977
crossref_primary_10_3390_s24020637
crossref_primary_10_1007_s11227_023_05503_w
crossref_primary_10_1007_s10489_022_03829_1
crossref_primary_10_1109_JIOT_2024_3401101
crossref_primary_10_3390_e23111466
crossref_primary_10_1016_j_psep_2023_02_078
crossref_primary_10_1109_TETC_2021_3073017
crossref_primary_10_1016_j_ress_2023_109410
crossref_primary_10_1109_TIM_2023_3236354
crossref_primary_10_1109_TNSM_2023_3293806
crossref_primary_10_7595_management_fon_2020_0002
crossref_primary_10_1007_s40998_024_00758_2
crossref_primary_10_1088_1742_6596_2132_1_012012
crossref_primary_10_1016_j_engappai_2023_106466
crossref_primary_10_1109_ACCESS_2023_3289068
crossref_primary_10_3390_app11135869
crossref_primary_10_3390_app14219820
crossref_primary_10_1088_2632_2153_ace756
crossref_primary_10_1177_1748006X211001979
crossref_primary_10_1016_j_compind_2024_104097
crossref_primary_10_1109_TIFS_2025_3561672
crossref_primary_10_1109_ACCESS_2019_2933602
crossref_primary_10_3390_s24092833
crossref_primary_10_3390_s25185686
crossref_primary_10_1109_TIM_2023_3320734
crossref_primary_10_1016_j_engappai_2025_112269
crossref_primary_10_1016_j_eswa_2023_120725
crossref_primary_10_1109_TIM_2024_3449958
crossref_primary_10_1016_j_neunet_2023_12_023
crossref_primary_10_3390_app11199290
crossref_primary_10_1007_s10618_022_00876_7
crossref_primary_10_1007_s10489_021_02527_8
crossref_primary_10_1145_3572780
crossref_primary_10_1007_s10618_020_00697_6
crossref_primary_10_1016_j_engappai_2023_106597
crossref_primary_10_3390_electronics14091857
crossref_primary_10_1109_ACCESS_2023_3313448
crossref_primary_10_1007_s44267_025_00085_y
crossref_primary_10_3390_s23229272
crossref_primary_10_3390_s24092845
crossref_primary_10_3390_app13031778
crossref_primary_10_1016_j_cherd_2025_07_041
crossref_primary_10_1016_j_knosys_2025_114511
crossref_primary_10_1016_j_ins_2025_122279
crossref_primary_10_3390_s24041330
crossref_primary_10_1109_JSEN_2024_3452088
crossref_primary_10_1109_TCE_2024_3409391
crossref_primary_10_3390_s24051495
crossref_primary_10_1109_TII_2024_3413952
crossref_primary_10_1016_j_ymssp_2024_111141
crossref_primary_10_1145_3453155
crossref_primary_10_3390_electronics13010195
crossref_primary_10_1109_ACCESS_2022_3164439
crossref_primary_10_1016_j_measurement_2022_111318
crossref_primary_10_1016_j_asoc_2025_113903
crossref_primary_10_32604_cmc_2023_038551
crossref_primary_10_1109_TKDE_2023_3328882
crossref_primary_10_1016_j_eswa_2023_120542
crossref_primary_10_1016_j_asoc_2023_110911
crossref_primary_10_1016_j_artmed_2022_102387
crossref_primary_10_3390_s25103249
crossref_primary_10_1016_j_knosys_2023_110725
crossref_primary_10_1145_3659058
crossref_primary_10_1016_j_cose_2025_104509
crossref_primary_10_3390_electronics12020354
crossref_primary_10_1145_3592790
crossref_primary_10_1109_TNSM_2024_3486167
crossref_primary_10_1109_LRA_2022_3153989
crossref_primary_10_1109_JBHI_2021_3101549
crossref_primary_10_1093_bib_bbz170
crossref_primary_10_1016_j_ins_2022_07_179
crossref_primary_10_1016_j_isatra_2022_09_009
crossref_primary_10_1016_j_ins_2024_120852
crossref_primary_10_1109_TETCI_2023_3290027
crossref_primary_10_1007_s10010_021_00481_y
crossref_primary_10_1007_s11760_024_03543_0
crossref_primary_10_3390_s25113396
crossref_primary_10_1016_j_eswa_2025_126667
crossref_primary_10_1002_int_23027
crossref_primary_10_1016_j_engappai_2023_107510
crossref_primary_10_1016_j_procir_2021_11_076
crossref_primary_10_1016_j_idm_2025_08_006
crossref_primary_10_1007_s10994_024_06689_7
crossref_primary_10_1109_ACCESS_2025_3594473
crossref_primary_10_1109_JSYST_2023_3347435
crossref_primary_10_1109_TPAMI_2024_3443141
crossref_primary_10_3390_a15110429
crossref_primary_10_3390_electronics13071326
crossref_primary_10_1016_j_ress_2023_109306
crossref_primary_10_1016_j_knosys_2019_105187
crossref_primary_10_1007_s40747_025_01839_3
crossref_primary_10_1093_comjnl_bxaa174
crossref_primary_10_3390_s22082886
crossref_primary_10_1016_j_asoc_2024_111426
crossref_primary_10_3233_AIC_200629
crossref_primary_10_1109_JIOT_2024_3390691
crossref_primary_10_3390_s22166249
crossref_primary_10_1109_ACCESS_2024_3513001
crossref_primary_10_1109_ACCESS_2023_3301140
crossref_primary_10_1109_TIM_2024_3460930
crossref_primary_10_1145_3663573
crossref_primary_10_1016_j_ipm_2023_103383
crossref_primary_10_1016_j_measen_2024_101157
crossref_primary_10_3390_app15063234
crossref_primary_10_1109_TRO_2023_3332224
crossref_primary_10_1109_TNNLS_2021_3105827
crossref_primary_10_1016_j_jmsy_2024_09_021
crossref_primary_10_1016_j_future_2024_107545
crossref_primary_10_1109_TIM_2025_3577826
crossref_primary_10_1007_s10489_025_06589_w
crossref_primary_10_1109_JIOT_2024_3421577
crossref_primary_10_1109_TGRS_2020_2984951
crossref_primary_10_1016_j_jnca_2023_103648
crossref_primary_10_1016_j_engappai_2025_111310
crossref_primary_10_1016_j_jfoodeng_2025_112485
crossref_primary_10_1109_TETC_2023_3280577
crossref_primary_10_1016_j_neucom_2023_126644
crossref_primary_10_3390_s25175216
crossref_primary_10_1016_j_asoc_2023_110832
crossref_primary_10_1016_j_asoc_2022_108489
crossref_primary_10_1186_s13677_024_00677_x
crossref_primary_10_1016_j_knosys_2024_111912
crossref_primary_10_1016_j_future_2023_03_020
crossref_primary_10_3390_s20061670
crossref_primary_10_1080_19475705_2025_2519429
crossref_primary_10_3390_app14020774
crossref_primary_10_1016_j_psep_2022_05_039
crossref_primary_10_3390_bioengineering10121348
crossref_primary_10_3390_rs16132415
crossref_primary_10_1109_TIM_2025_3593530
crossref_primary_10_1016_j_yofte_2024_103969
crossref_primary_10_1109_LRA_2023_3346270
crossref_primary_10_1016_j_jgsce_2024_205394
crossref_primary_10_1016_j_procs_2021_08_005
crossref_primary_10_1016_j_eswa_2024_126156
crossref_primary_10_1016_j_eswa_2025_126573
crossref_primary_10_3139_104_112276
crossref_primary_10_1016_j_neucom_2022_03_048
crossref_primary_10_1007_s12083_024_01712_z
crossref_primary_10_1016_j_conengprac_2023_105531
crossref_primary_10_1109_LRA_2020_3038377
crossref_primary_10_3390_s23177552
crossref_primary_10_32604_cmc_2023_044253
crossref_primary_10_1016_j_inffus_2025_103462
crossref_primary_10_1109_LRA_2025_3583161
crossref_primary_10_1109_ACCESS_2021_3097116
crossref_primary_10_3390_s24051522
crossref_primary_10_3390_signals2040042
crossref_primary_10_3390_s20226467
crossref_primary_10_1109_LRA_2022_3192794
crossref_primary_10_1109_TASE_2025_3538328
crossref_primary_10_1016_j_jlp_2021_104623
crossref_primary_10_1016_j_cose_2024_103813
crossref_primary_10_1016_j_petrol_2022_110522
crossref_primary_10_1109_TIM_2023_3315420
crossref_primary_10_1016_j_nucengdes_2025_113956
crossref_primary_10_1007_s44443_025_00024_3
crossref_primary_10_1016_j_measurement_2025_118905
crossref_primary_10_3233_JIFS_222554
crossref_primary_10_1109_TSC_2024_3411481
crossref_primary_10_1016_j_cose_2024_103825
crossref_primary_10_26599_TST_2023_9010073
crossref_primary_10_1016_j_cie_2022_108559
crossref_primary_10_1016_j_compag_2025_110566
crossref_primary_10_1016_j_inffus_2022_08_011
crossref_primary_10_1109_ACCESS_2021_3107975
crossref_primary_10_1177_09287329251342392
crossref_primary_10_1109_TASE_2024_3452149
crossref_primary_10_3390_aerospace9080437
crossref_primary_10_1016_j_neunet_2025_107664
crossref_primary_10_1016_j_robot_2019_103344
crossref_primary_10_1016_j_neucom_2021_03_062
crossref_primary_10_1002_sdtp_18143
crossref_primary_10_1016_j_epsr_2020_106253
crossref_primary_10_1109_JIOT_2023_3289814
crossref_primary_10_1007_s11227_025_07044_w
crossref_primary_10_1016_j_is_2024_102429
crossref_primary_10_1109_TNNLS_2023_3325667
crossref_primary_10_1016_j_isatra_2024_06_025
crossref_primary_10_1002_eng2_13021
crossref_primary_10_1061_JENMDT_EMENG_7635
crossref_primary_10_1007_s13042_024_02212_5
crossref_primary_10_3390_s25010190
crossref_primary_10_1109_TIFS_2024_3459631
crossref_primary_10_1109_ACCESS_2023_3276297
crossref_primary_10_1007_s11554_024_01459_z
crossref_primary_10_1016_j_patcog_2022_109084
crossref_primary_10_3390_s22093468
crossref_primary_10_1007_s10489_025_06650_8
crossref_primary_10_1109_ACCESS_2021_3078553
crossref_primary_10_1109_TII_2024_3485808
crossref_primary_10_1109_ACCESS_2020_3000859
crossref_primary_10_1007_s11370_021_00355_w
crossref_primary_10_1007_s10489_023_04764_5
crossref_primary_10_1109_TIM_2024_3369159
crossref_primary_10_1002_cend_202400053
crossref_primary_10_1038_s41598_023_31193_8
crossref_primary_10_1007_s10618_022_00911_7
crossref_primary_10_1109_TIFS_2025_3588674
crossref_primary_10_1109_TNNLS_2023_3262277
crossref_primary_10_1016_j_knosys_2024_111928
crossref_primary_10_1016_j_psep_2025_107066
crossref_primary_10_1109_TKDE_2023_3335317
crossref_primary_10_1007_s11063_020_10223_w
crossref_primary_10_1007_s10846_021_01496_x
crossref_primary_10_3390_s23052844
crossref_primary_10_1109_LRA_2021_3062597
crossref_primary_10_1016_j_cose_2023_103310
crossref_primary_10_3233_IDA_195075
crossref_primary_10_1002_stc_2948
crossref_primary_10_3390_aerospace7080115
crossref_primary_10_1016_j_future_2025_107751
crossref_primary_10_1109_ACCESS_2022_3147188
crossref_primary_10_3390_drones7050326
crossref_primary_10_1016_j_engappai_2025_111308
crossref_primary_10_1016_j_apor_2021_103030
crossref_primary_10_1109_JIOT_2025_3583424
crossref_primary_10_1016_j_knosys_2024_111507
crossref_primary_10_1016_j_comnet_2025_111729
crossref_primary_10_1016_j_cose_2023_103581
crossref_primary_10_1007_s10846_021_01312_6
crossref_primary_10_3390_math13071209
crossref_primary_10_1109_MGRS_2018_2853555
crossref_primary_10_1109_ACCESS_2024_3359413
crossref_primary_10_32604_cmc_2022_023641
crossref_primary_10_1007_s42979_021_00658_w
crossref_primary_10_1016_j_jksuci_2024_102232
crossref_primary_10_3390_electronics14102068
crossref_primary_10_1016_j_eswa_2025_127379
crossref_primary_10_1016_j_measurement_2022_112171
crossref_primary_10_1016_j_neucom_2025_131385
crossref_primary_10_1007_s00170_023_11617_5
crossref_primary_10_1109_ACCESS_2022_3178592
crossref_primary_10_1109_ACCESS_2021_3064854
crossref_primary_10_1016_j_jnca_2025_104216
crossref_primary_10_1109_TRO_2024_3468768
crossref_primary_10_1007_s00521_023_08213_9
crossref_primary_10_1109_TNNLS_2023_3337876
crossref_primary_10_4018_IJISP_343306
crossref_primary_10_1109_TIM_2024_3440379
crossref_primary_10_1016_j_nucengdes_2024_112949
crossref_primary_10_1080_0951192X_2025_2452985
crossref_primary_10_1016_j_patcog_2024_110874
crossref_primary_10_1016_j_psep_2021_10_036
crossref_primary_10_1109_JIOT_2025_3558273
crossref_primary_10_32604_cmc_2024_053765
crossref_primary_10_1109_LRA_2025_3601037
crossref_primary_10_1007_s10489_025_06441_1
crossref_primary_10_1109_TR_2025_3528256
crossref_primary_10_1109_TIM_2020_2994012
crossref_primary_10_1007_s10489_025_06551_w
crossref_primary_10_1007_s10618_023_00988_8
crossref_primary_10_1109_TII_2024_3381790
crossref_primary_10_1080_09540091_2022_2078281
crossref_primary_10_3390_s20133738
crossref_primary_10_1016_j_neunet_2024_106638
crossref_primary_10_1109_ACCESS_2021_3094243
crossref_primary_10_1016_j_ins_2024_120222
crossref_primary_10_3390_app122010390
crossref_primary_10_1109_TKDE_2024_3360640
crossref_primary_10_1109_JIOT_2023_3303946
crossref_primary_10_1080_03088839_2024_2388177
crossref_primary_10_1109_TC_2021_3065073
crossref_primary_10_1016_j_future_2023_02_015
crossref_primary_10_1016_j_robot_2022_104067
crossref_primary_10_1007_s00530_024_01472_z
crossref_primary_10_1109_JIOT_2021_3100509
crossref_primary_10_1109_JSEN_2024_3509632
crossref_primary_10_1109_ACCESS_2024_3497755
crossref_primary_10_1109_JSTARS_2020_2964409
crossref_primary_10_1016_j_isatra_2023_09_002
crossref_primary_10_1109_TNNLS_2022_3162949
crossref_primary_10_1016_j_conengprac_2024_106164
crossref_primary_10_1145_3702978
crossref_primary_10_1049_csy2_12085
crossref_primary_10_3390_s25144358
crossref_primary_10_1016_j_jfoodeng_2024_111996
crossref_primary_10_1109_TII_2024_3393528
crossref_primary_10_1109_TAES_2024_3456748
crossref_primary_10_1007_s11227_023_05772_5
crossref_primary_10_1109_JIOT_2025_3577931
crossref_primary_10_1016_j_engappai_2024_109323
crossref_primary_10_1016_j_engappai_2024_109687
crossref_primary_10_3390_math11051204
crossref_primary_10_1016_j_jhydrol_2021_127221
crossref_primary_10_1109_JIOT_2025_3537864
crossref_primary_10_1016_j_is_2025_102524
crossref_primary_10_1002_cite_202200238
crossref_primary_10_1088_1361_6501_ad9495
crossref_primary_10_1109_ACCESS_2022_3216930
crossref_primary_10_3390_s23156660
crossref_primary_10_1016_j_patcog_2022_108945
crossref_primary_10_1109_JAS_2023_123423
crossref_primary_10_1016_j_inffus_2024_102255
crossref_primary_10_1007_s10489_022_04324_3
crossref_primary_10_3390_electronics14010065
crossref_primary_10_1016_j_rineng_2025_106801
crossref_primary_10_1371_journal_pone_0324543
crossref_primary_10_1145_3691338
crossref_primary_10_1109_TCE_2024_3376440
crossref_primary_10_1007_s10489_025_06606_y
crossref_primary_10_1080_01691864_2022_2035253
crossref_primary_10_1007_s10844_025_00918_8
crossref_primary_10_1007_s10489_022_04337_y
crossref_primary_10_1016_j_measurement_2021_109529
crossref_primary_10_1109_TGRS_2022_3155969
crossref_primary_10_3390_s24196414
crossref_primary_10_1109_LRA_2023_3250008
crossref_primary_10_1155_2022_4222827
crossref_primary_10_1109_JIOT_2023_3323620
crossref_primary_10_1002_cpe_70245
crossref_primary_10_1016_j_jfoodeng_2023_111448
crossref_primary_10_3390_electronics11233955
crossref_primary_10_1016_j_jmsy_2024_06_006
crossref_primary_10_1007_s11370_021_00398_z
crossref_primary_10_1016_j_knosys_2023_111002
crossref_primary_10_3390_electronics12132763
crossref_primary_10_1515_auto_2023_0031
crossref_primary_10_1109_JIOT_2024_3520362
crossref_primary_10_1007_s00521_021_06017_3
crossref_primary_10_1016_j_jhydrol_2022_128127
crossref_primary_10_1016_j_anucene_2020_108077
crossref_primary_10_1016_j_measurement_2020_107890
crossref_primary_10_1016_j_aei_2024_102357
crossref_primary_10_1016_j_neucom_2024_128428
crossref_primary_10_1109_JSEN_2020_2995271
crossref_primary_10_3390_electronics14071401
crossref_primary_10_1109_ACCESS_2025_3549402
crossref_primary_10_1109_JSEN_2024_3452955
crossref_primary_10_1109_TKDE_2024_3466291
crossref_primary_10_1109_LRA_2021_3074084
crossref_primary_10_1002_2050_7038_12103
crossref_primary_10_3390_math12243969
crossref_primary_10_1016_j_asr_2024_09_050
crossref_primary_10_1016_j_jmsy_2025_07_002
crossref_primary_10_1016_j_patcog_2024_110826
crossref_primary_10_1016_j_aei_2025_103620
crossref_primary_10_1109_JPROC_2021_3052449
crossref_primary_10_1109_JIOT_2024_3443910
crossref_primary_10_1177_02783649241297998
crossref_primary_10_1007_s13042_024_02482_z
crossref_primary_10_1016_j_engappai_2024_108663
crossref_primary_10_1109_JIOT_2024_3414492
crossref_primary_10_3233_JIFS_200175
crossref_primary_10_1007_s10462_025_11108_x
crossref_primary_10_1016_j_eswa_2025_129049
crossref_primary_10_1016_j_jfranklin_2024_107199
crossref_primary_10_1109_JSEN_2021_3105226
crossref_primary_10_1109_TII_2023_3288226
crossref_primary_10_1109_TIM_2022_3223142
crossref_primary_10_1016_j_asoc_2022_109903
crossref_primary_10_1109_ACCESS_2024_3522325
crossref_primary_10_1109_TII_2022_3231923
crossref_primary_10_1007_s10618_023_00985_x
crossref_primary_10_1109_TNNLS_2024_3439404
crossref_primary_10_1007_s13369_025_10300_z
crossref_primary_10_1016_j_psep_2024_04_012
crossref_primary_10_3390_ai6090215
crossref_primary_10_3390_app15105623
crossref_primary_10_1109_ACCESS_2022_3167640
crossref_primary_10_1121_10_0034831
crossref_primary_10_3390_electronics13112032
crossref_primary_10_1080_08839514_2025_2538519
crossref_primary_10_1016_j_jfoodeng_2025_112818
crossref_primary_10_1016_j_future_2025_108126
crossref_primary_10_1109_TKDE_2024_3475809
crossref_primary_10_1371_journal_pone_0286770
crossref_primary_10_1007_s10115_024_02107_5
crossref_primary_10_1016_j_ijcip_2023_100612
crossref_primary_10_1038_s41598_024_51374_3
crossref_primary_10_1016_j_engappai_2024_108684
crossref_primary_10_1007_s11227_025_07455_9
crossref_primary_10_1109_TON_2025_3540091
crossref_primary_10_1016_j_jobe_2023_107605
crossref_primary_10_1080_00207543_2023_2175591
crossref_primary_10_1007_s42417_025_01814_9
crossref_primary_10_1109_TVT_2023_3285599
crossref_primary_10_1016_j_eswa_2024_124348
crossref_primary_10_1007_s11036_023_02204_9
crossref_primary_10_3390_electronics12194146
crossref_primary_10_1109_JSEN_2023_3327138
crossref_primary_10_1016_j_eswa_2023_120818
crossref_primary_10_1109_JIOT_2023_3262612
crossref_primary_10_1177_14759217251369727
crossref_primary_10_1016_j_asoc_2023_111169
crossref_primary_10_1080_01969722_2023_2240651
crossref_primary_10_1109_TIM_2024_3493890
crossref_primary_10_3390_s24020569
crossref_primary_10_1016_j_istruc_2025_109092
crossref_primary_10_1109_ACCESS_2024_3415088
crossref_primary_10_1007_s00530_023_01199_3
crossref_primary_10_1109_ACCESS_2023_3289921
crossref_primary_10_1016_j_dsp_2024_104518
crossref_primary_10_1109_TNSM_2019_2919327
crossref_primary_10_1016_j_asoc_2025_113761
crossref_primary_10_1016_j_cose_2025_104461
crossref_primary_10_1177_00368504211021192
crossref_primary_10_1186_s13677_025_00766_5
crossref_primary_10_1007_s11227_023_05534_3
crossref_primary_10_1109_TASE_2020_3042158
crossref_primary_10_1109_ACCESS_2019_2895394
crossref_primary_10_1016_j_amar_2022_100212
crossref_primary_10_1109_TNSRE_2023_3328888
crossref_primary_10_1177_16878140211013138
crossref_primary_10_1016_j_compag_2023_108252
crossref_primary_10_3390_electronics11152306
crossref_primary_10_1109_JSEN_2025_3530007
crossref_primary_10_1007_s00500_023_08467_4
crossref_primary_10_1109_JSAC_2022_3191341
crossref_primary_10_1002_rob_22156
crossref_primary_10_1109_JIOT_2024_3414304
crossref_primary_10_1109_TIM_2024_3398110
crossref_primary_10_3390_app121910078
crossref_primary_10_1016_j_neunet_2023_11_023
crossref_primary_10_1007_s10489_025_06481_7
crossref_primary_10_1109_ACCESS_2022_3213038
crossref_primary_10_3390_e23010083
crossref_primary_10_3390_s25020310
crossref_primary_10_3390_s23031104
crossref_primary_10_1109_TGRS_2020_3019313
crossref_primary_10_1016_j_psep_2024_04_052
crossref_primary_10_1109_ACCESS_2024_3371891
crossref_primary_10_1016_j_compind_2023_104024
crossref_primary_10_1016_j_ress_2018_11_027
crossref_primary_10_1109_TII_2022_3216006
crossref_primary_10_3390_s23104764
crossref_primary_10_1016_j_ress_2023_109717
crossref_primary_10_1109_TCC_2024_3466174
crossref_primary_10_1109_JIOT_2024_3448429
crossref_primary_10_1016_j_neucom_2025_129887
crossref_primary_10_1007_s11063_021_10610_x
crossref_primary_10_1016_j_measurement_2025_117497
Cites_doi 10.1145/1390156.1390294
10.1007/s10846-013-0014-5
10.18653/v1/K16-1002
10.1162/neco.1997.9.8.1735
10.15607/RSS.2015.XI.044
10.1109/HSI.2008.4581481
10.1109/ICRA.2015.7139892
10.1109/ICRA.2012.6225358
10.1109/ICRA.2016.7487160
10.1109/COASE.2010.5584452
10.1177/0278364912471865
10.1109/TR.2017.2715180
10.1137/1.9781611972818.1
10.3115/v1/D14-1179
10.1016/j.robot.2014.03.003
10.1109/TASE.2014.2378150
10.1126/science.1127647
10.1109/IJCNN.2017.7966273
10.1145/1541880.1541882
10.1109/IROS.2011.6095100
10.1109/MRA.2012.2229950
10.1109/DSAA.2015.7344872
10.1109/IROS.2014.6943078
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2018.2801475
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 1551
ExternalDocumentID 10_1109_LRA_2018_2801475
8279425
Genre orig-research
GrantInformation_xml – fundername: NIDILRR
  grantid: 90RE5016-01-00
– fundername: Google Faculty Research Award
– fundername: NSF
  grantid: IIS-1150157
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-7cee1f39e69447c391e5754b3465813fee460b2c77bc0f9d331083d4cb7435713
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Sun Nov 09 08:13:12 EST 2025
Tue Nov 18 21:40:01 EST 2025
Sat Nov 29 06:03:00 EST 2025
Wed Aug 27 02:48:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-7cee1f39e69447c391e5754b3465813fee460b2c77bc0f9d331083d4cb7435713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1287-9433
0000-0003-4720-1136
0000-0002-2448-2310
PQID 2299372531
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2018_2801475
proquest_journals_2299372531
ieee_primary_8279425
crossref_citationtrail_10_1109_LRA_2018_2801475
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
ref14
chollet (ref32) 2015
malhotra (ref23) 0
hinton (ref17) 2006; 313
ref33
ref11
ref10
ref2
ref16
ref19
ref18
karl (ref31) 2017
bayer (ref27) 2014
park (ref4) 0
im (ref30) 0
sölch (ref28) 2016
ref24
ref25
malhotra (ref22) 0
park (ref34) 0
ref21
o'shea (ref20) 2016
ref29
ref8
ref7
ref9
park (ref1) 0
ref3
ref6
ref5
kingma (ref26) 2014
an (ref36) 2015
References_xml – start-page: 2059
  year: 0
  ident: ref30
  article-title: Denoising criterion for variational auto-encoding framework
  publication-title: Proc AAAI
– ident: ref5
  doi: 10.1145/1390156.1390294
– ident: ref12
  doi: 10.1007/s10846-013-0014-5
– ident: ref29
  doi: 10.18653/v1/K16-1002
– ident: ref19
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref9
  doi: 10.15607/RSS.2015.XI.044
– year: 2017
  ident: ref31
  article-title: Deep variational Bayes filters: Unsupervised learning of state space models from raw data
  publication-title: Proc Int Conf Learn Represent
– year: 2014
  ident: ref27
  article-title: Learning stochastic recurrent networks
  publication-title: Proc NIPS 2014 Workshop Advances Variational Inf
– ident: ref35
  doi: 10.1109/HSI.2008.4581481
– ident: ref14
  doi: 10.1109/ICRA.2015.7139892
– year: 2015
  ident: ref36
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
– ident: ref15
  doi: 10.1109/ICRA.2012.6225358
– ident: ref3
  doi: 10.1109/ICRA.2016.7487160
– year: 2016
  ident: ref20
  article-title: Recurrent neural radio anomaly detection
  publication-title: arXiv 1611 00301
– year: 2014
  ident: ref26
  article-title: Auto-encoding variational Bayes
  publication-title: Proc Int Conf Learn Represent
– year: 2016
  ident: ref28
  article-title: Variational inference for on-line anomaly detection in high-dimensional time series
  publication-title: Proc ICML 2016 Anomaly Detection Workshop
– ident: ref10
  doi: 10.1109/COASE.2010.5584452
– ident: ref33
  doi: 10.1177/0278364912471865
– start-page: 5406
  year: 0
  ident: ref34
  article-title: Multimodal execution monitoring for robot-assisted feeding
  publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst
– ident: ref16
  doi: 10.1109/TR.2017.2715180
– year: 0
  ident: ref1
  article-title: Towards assistive feeding with a general-purpose mobile manipulator
  publication-title: Proc IEEE Int Conf Robot Autom -Workshop Human-Robot Interfaces Enhanced Phys Interactions
– ident: ref13
  doi: 10.1137/1.9781611972818.1
– ident: ref24
  doi: 10.3115/v1/D14-1179
– ident: ref18
  doi: 10.1016/j.robot.2014.03.003
– ident: ref7
  doi: 10.1109/TASE.2014.2378150
– volume: 313
  start-page: 504
  year: 2006
  ident: ref17
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: 89
  year: 0
  ident: ref22
  article-title: Long short term memory networks for anomaly detection in time series
  publication-title: Eur Symp on Artif Neural Netw Computat Intell Mach Learning
– ident: ref25
  doi: 10.1109/IJCNN.2017.7966273
– ident: ref6
  doi: 10.1145/1541880.1541882
– year: 0
  ident: ref23
  article-title: LSTM-based encoder-decoder for multi-sensor anomaly detection
  publication-title: Proc Anomaly Detection Workshop 33rd Int Conf Mach Learn
– year: 2015
  ident: ref32
  article-title: Keras
– year: 0
  ident: ref4
  article-title: Multimodal anomaly detection for assistive robots
– ident: ref8
  doi: 10.1109/IROS.2011.6095100
– ident: ref2
  doi: 10.1109/MRA.2012.2229950
– ident: ref21
  doi: 10.1109/DSAA.2015.7344872
– ident: ref11
  doi: 10.1109/IROS.2014.6943078
SSID ssj0001527395
Score 2.5647907
Snippet The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1544
SubjectTerms Anomalies
Anomaly detection
assistive robots
Decoding
deep learning in robotics and automation
Detectors
Failure detection and recovery
Gaussian distribution
Hazards
Hidden Markov models
Robot sensing systems
Robots
Sensors
Title A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder
URI https://ieeexplore.ieee.org/document/8279425
https://www.proquest.com/docview/2299372531
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB1RxAEOyy4fotCtfOCChGlqO3F8LLtUeygI8SVuUWxPJCRIViVF4sJvx3bSggRC4paDHUV5tufNeOYNwH5sGM-V4NT33KYiSXKaayNokufGmSuLDAPSE3l2lt7eqvMlOFzUwiBiSD7DI_8Y7vJtZWY-VDZImVs9LO5AR0rZ1Gq9xVO8kpiK5zeRkRpMLkY-dSs9Yl4hxScSvrM8oZXKh_M3GJXx-vc-5yf8aMkjGTVo_4IlLDdg7Z2k4CbYEQk1tQ-V9SPL6iG_fyZ_sQ7ReeIoKrmodFVTh4tH2JJxY79ISB4geUkml1en9NhZN0tunCfdRgvJaFZXXvXS4nQLrscnV3_-0baTAjVMsppKZwqHBVeYKCGk4WqIjqYJzYUjIENeIIok0sxIqU1UKMsd6Uu5FUY7ghE7P3YblsuqxB0gyHMcCvQyXlbEUaG15UWqbeo8H-Xcoy4M5n85M63MuO92cZ8FdyNSmcMl87hkLS5dOFjM-N9IbHwxdtPjsBjXQtCF3hzIrN2Djxljnnsxd8jsfj5rD1b9u5vk2x4s19MZ_oYV81TfPU770Dl9OemHRfYK4VrOlg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xqAQ98ChFXZ4-cKmE2cR2Hj4ujxWIsEJ0qbhFsT2RKkFSLdlK_HtsJ7tFoqrELQdbifLZnm_GM98AHEWa8UIKTl3PbSriuKCF0oLGRaGtuTLI0COdJaNR-vAgbxfgeF4Lg4g--QxP3KO_yze1nrpQWT9ldvWwaBGWIyFY2FZr_Y2oOC0xGc3uIgPZz-4GLnkrPWFOI8WlEr6xPb6ZyrsT2JuV4frHPmgD1jr6SAYt3puwgNUX-PxGVHALzID4qtqn2riRVf1UPL6Qc2x8fJ5YkkrualU31CLjMDZk2Fow4tMHSFGR7Mf4hp5a-2bIT-tLd_FCMpg2tdO9NDj5CvfDi_HZJe16KVDNEtbQxBrDsOQSYylEorkM0RI1obiwFCTkJaKIA8V0kigdlNJwS_tSboRWlmJE1pPdhqWqrvAbEOQFhgKdkJcRUVAqZXiZKpNa30daB6kH_dlfznUnNO76XTzm3uEIZG5xyR0ueYdLD77PZ_xuRTb-M3bL4TAf10HQg70ZkHm3C59zxhz7YvaY2fn3rENYuRzfZHl2NbrehVX3njYVdw-WmskU9-GT_tP8ep4c-KX2CuRt0Kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multimodal+Anomaly+Detector+for+Robot-Assisted+Feeding+Using+an+LSTM-Based+Variational+Autoencoder&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Park%2C+Daehyung&rft.au=Hoshi%2C+Yuuna&rft.au=Kemp%2C+Charles+C&rft.date=2018-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=3&rft.issue=3&rft.spage=1544&rft_id=info:doi/10.1109%2FLRA.2018.2801475&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon