A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder
The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for detecting a wide range of anomalies. However, the fusion of high-dimensional and heterogeneous modalities is a challenging problem for model-based...
Saved in:
| Published in: | IEEE robotics and automation letters Vol. 3; no. 3; pp. 1544 - 1551 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for detecting a wide range of anomalies. However, the fusion of high-dimensional and heterogeneous modalities is a challenging problem for model-based anomaly detection. We introduce a long short-term memory-based variational autoencoder (LSTM-VAE) that fuses signals and reconstructs their expected distribution by introducing a progress-based varying prior. Our LSTM-VAE-based detector reports an anomaly when a reconstruction-based anomaly score is higher than a state-based threshold. For evaluations with 1555 robot-assisted feeding executions, including 12 representative types of anomalies, our detector had a higher area under the receiver operating characteristic curve of 0.8710 than 5 other baseline detectors from the literature. We also show the variational autoencoding and state-based thresholding are effective in detecting anomalies from 17 raw sensory signals without significant feature engineering effort. |
|---|---|
| AbstractList | The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for detecting a wide range of anomalies. However, the fusion of high-dimensional and heterogeneous modalities is a challenging problem for model-based anomaly detection. We introduce a long short-term memory-based variational autoencoder (LSTM-VAE) that fuses signals and reconstructs their expected distribution by introducing a progress-based varying prior. Our LSTM-VAE-based detector reports an anomaly when a reconstruction-based anomaly score is higher than a state-based threshold. For evaluations with 1555 robot-assisted feeding executions, including 12 representative types of anomalies, our detector had a higher area under the receiver operating characteristic curve of 0.8710 than 5 other baseline detectors from the literature. We also show the variational autoencoding and state-based thresholding are effective in detecting anomalies from 17 raw sensory signals without significant feature engineering effort. |
| Author | Daehyung Park Kemp, Charles C. Hoshi, Yuuna |
| Author_xml | – sequence: 1 surname: Daehyung Park fullname: Daehyung Park email: deric.park@gatech.edu organization: Healthcare Robot. Lab., Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 2 givenname: Yuuna surname: Hoshi fullname: Hoshi, Yuuna email: youna.hoshi@gmail.com organization: Healthcare Robot. Lab., Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 3 givenname: Charles C. surname: Kemp fullname: Kemp, Charles C. email: charlie.kemp@bme.gatech.edu organization: Healthcare Robot. Lab., Georgia Inst. of Technol., Atlanta, GA, USA |
| BookMark | eNp9UE1Lw0AQXaSCtfYueAl4Tt2vZLPHWK0KLUJtvYbNZiJb0mzd3R76701sEfHgYT5g5r158y7RoLUtIHRN8IQQLO_my3xCMckmNMOEi-QMDSkTImYiTQe_-gs09n6DMSYJFUwmQ1Tl0WLfBLO1lWqivLVb1RyiBwigg3VR3cXSljbEuffGB6iiGUBl2o9o7fus2mj-tlrE98p3s3fljArGtj3XPlhota3AXaHzWjUexqc6QuvZ42r6HM9fn16m-TzWVNAQCw1AaiYhlZwLzSSBRCS8ZDxNMsJqAJ7ikmohSo1rWTFGcMYqrkvBWSIIG6HbI-_O2c89-FBs7N51YnxBqZRM0IT1W_i4pZ313kFd7JzZKncoCC56O4vOzqK3szjZ2UHSPxBtwvejwSnT_Ae8OQINAPzcyaiQvNPyBfAggmo |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_3233_JIFS_224416 crossref_primary_10_1016_j_knosys_2023_110936 crossref_primary_10_3390_s25061849 crossref_primary_10_1007_s11227_024_06694_6 crossref_primary_10_3390_app15052861 crossref_primary_10_1016_j_jii_2023_100490 crossref_primary_10_1109_TNSE_2025_3555764 crossref_primary_10_1088_2631_7990_adbd98 crossref_primary_10_1016_j_buildenv_2020_107212 crossref_primary_10_1016_j_cose_2022_102652 crossref_primary_10_1007_s11760_025_04305_2 crossref_primary_10_3389_frobt_2020_578805 crossref_primary_10_1016_j_inffus_2024_102906 crossref_primary_10_1016_j_ress_2023_109404 crossref_primary_10_1016_j_neucom_2025_130611 crossref_primary_10_3390_e27090939 crossref_primary_10_1016_j_ymssp_2025_112863 crossref_primary_10_3390_en16207156 crossref_primary_10_1016_j_knosys_2024_112167 crossref_primary_10_1109_TAES_2024_3463629 crossref_primary_10_3390_drones9060408 crossref_primary_10_1109_ACCESS_2022_3165977 crossref_primary_10_3390_s24020637 crossref_primary_10_1007_s11227_023_05503_w crossref_primary_10_1007_s10489_022_03829_1 crossref_primary_10_1109_JIOT_2024_3401101 crossref_primary_10_3390_e23111466 crossref_primary_10_1016_j_psep_2023_02_078 crossref_primary_10_1109_TETC_2021_3073017 crossref_primary_10_1016_j_ress_2023_109410 crossref_primary_10_1109_TIM_2023_3236354 crossref_primary_10_1109_TNSM_2023_3293806 crossref_primary_10_7595_management_fon_2020_0002 crossref_primary_10_1007_s40998_024_00758_2 crossref_primary_10_1088_1742_6596_2132_1_012012 crossref_primary_10_1016_j_engappai_2023_106466 crossref_primary_10_1109_ACCESS_2023_3289068 crossref_primary_10_3390_app11135869 crossref_primary_10_3390_app14219820 crossref_primary_10_1088_2632_2153_ace756 crossref_primary_10_1177_1748006X211001979 crossref_primary_10_1016_j_compind_2024_104097 crossref_primary_10_1109_TIFS_2025_3561672 crossref_primary_10_1109_ACCESS_2019_2933602 crossref_primary_10_3390_s24092833 crossref_primary_10_3390_s25185686 crossref_primary_10_1109_TIM_2023_3320734 crossref_primary_10_1016_j_engappai_2025_112269 crossref_primary_10_1016_j_eswa_2023_120725 crossref_primary_10_1109_TIM_2024_3449958 crossref_primary_10_1016_j_neunet_2023_12_023 crossref_primary_10_3390_app11199290 crossref_primary_10_1007_s10618_022_00876_7 crossref_primary_10_1007_s10489_021_02527_8 crossref_primary_10_1145_3572780 crossref_primary_10_1007_s10618_020_00697_6 crossref_primary_10_1016_j_engappai_2023_106597 crossref_primary_10_3390_electronics14091857 crossref_primary_10_1109_ACCESS_2023_3313448 crossref_primary_10_1007_s44267_025_00085_y crossref_primary_10_3390_s23229272 crossref_primary_10_3390_s24092845 crossref_primary_10_3390_app13031778 crossref_primary_10_1016_j_cherd_2025_07_041 crossref_primary_10_1016_j_knosys_2025_114511 crossref_primary_10_1016_j_ins_2025_122279 crossref_primary_10_3390_s24041330 crossref_primary_10_1109_JSEN_2024_3452088 crossref_primary_10_1109_TCE_2024_3409391 crossref_primary_10_3390_s24051495 crossref_primary_10_1109_TII_2024_3413952 crossref_primary_10_1016_j_ymssp_2024_111141 crossref_primary_10_1145_3453155 crossref_primary_10_3390_electronics13010195 crossref_primary_10_1109_ACCESS_2022_3164439 crossref_primary_10_1016_j_measurement_2022_111318 crossref_primary_10_1016_j_asoc_2025_113903 crossref_primary_10_32604_cmc_2023_038551 crossref_primary_10_1109_TKDE_2023_3328882 crossref_primary_10_1016_j_eswa_2023_120542 crossref_primary_10_1016_j_asoc_2023_110911 crossref_primary_10_1016_j_artmed_2022_102387 crossref_primary_10_3390_s25103249 crossref_primary_10_1016_j_knosys_2023_110725 crossref_primary_10_1145_3659058 crossref_primary_10_1016_j_cose_2025_104509 crossref_primary_10_3390_electronics12020354 crossref_primary_10_1145_3592790 crossref_primary_10_1109_TNSM_2024_3486167 crossref_primary_10_1109_LRA_2022_3153989 crossref_primary_10_1109_JBHI_2021_3101549 crossref_primary_10_1093_bib_bbz170 crossref_primary_10_1016_j_ins_2022_07_179 crossref_primary_10_1016_j_isatra_2022_09_009 crossref_primary_10_1016_j_ins_2024_120852 crossref_primary_10_1109_TETCI_2023_3290027 crossref_primary_10_1007_s10010_021_00481_y crossref_primary_10_1007_s11760_024_03543_0 crossref_primary_10_3390_s25113396 crossref_primary_10_1016_j_eswa_2025_126667 crossref_primary_10_1002_int_23027 crossref_primary_10_1016_j_engappai_2023_107510 crossref_primary_10_1016_j_procir_2021_11_076 crossref_primary_10_1016_j_idm_2025_08_006 crossref_primary_10_1007_s10994_024_06689_7 crossref_primary_10_1109_ACCESS_2025_3594473 crossref_primary_10_1109_JSYST_2023_3347435 crossref_primary_10_1109_TPAMI_2024_3443141 crossref_primary_10_3390_a15110429 crossref_primary_10_3390_electronics13071326 crossref_primary_10_1016_j_ress_2023_109306 crossref_primary_10_1016_j_knosys_2019_105187 crossref_primary_10_1007_s40747_025_01839_3 crossref_primary_10_1093_comjnl_bxaa174 crossref_primary_10_3390_s22082886 crossref_primary_10_1016_j_asoc_2024_111426 crossref_primary_10_3233_AIC_200629 crossref_primary_10_1109_JIOT_2024_3390691 crossref_primary_10_3390_s22166249 crossref_primary_10_1109_ACCESS_2024_3513001 crossref_primary_10_1109_ACCESS_2023_3301140 crossref_primary_10_1109_TIM_2024_3460930 crossref_primary_10_1145_3663573 crossref_primary_10_1016_j_ipm_2023_103383 crossref_primary_10_1016_j_measen_2024_101157 crossref_primary_10_3390_app15063234 crossref_primary_10_1109_TRO_2023_3332224 crossref_primary_10_1109_TNNLS_2021_3105827 crossref_primary_10_1016_j_jmsy_2024_09_021 crossref_primary_10_1016_j_future_2024_107545 crossref_primary_10_1109_TIM_2025_3577826 crossref_primary_10_1007_s10489_025_06589_w crossref_primary_10_1109_JIOT_2024_3421577 crossref_primary_10_1109_TGRS_2020_2984951 crossref_primary_10_1016_j_jnca_2023_103648 crossref_primary_10_1016_j_engappai_2025_111310 crossref_primary_10_1016_j_jfoodeng_2025_112485 crossref_primary_10_1109_TETC_2023_3280577 crossref_primary_10_1016_j_neucom_2023_126644 crossref_primary_10_3390_s25175216 crossref_primary_10_1016_j_asoc_2023_110832 crossref_primary_10_1016_j_asoc_2022_108489 crossref_primary_10_1186_s13677_024_00677_x crossref_primary_10_1016_j_knosys_2024_111912 crossref_primary_10_1016_j_future_2023_03_020 crossref_primary_10_3390_s20061670 crossref_primary_10_1080_19475705_2025_2519429 crossref_primary_10_3390_app14020774 crossref_primary_10_1016_j_psep_2022_05_039 crossref_primary_10_3390_bioengineering10121348 crossref_primary_10_3390_rs16132415 crossref_primary_10_1109_TIM_2025_3593530 crossref_primary_10_1016_j_yofte_2024_103969 crossref_primary_10_1109_LRA_2023_3346270 crossref_primary_10_1016_j_jgsce_2024_205394 crossref_primary_10_1016_j_procs_2021_08_005 crossref_primary_10_1016_j_eswa_2024_126156 crossref_primary_10_1016_j_eswa_2025_126573 crossref_primary_10_3139_104_112276 crossref_primary_10_1016_j_neucom_2022_03_048 crossref_primary_10_1007_s12083_024_01712_z crossref_primary_10_1016_j_conengprac_2023_105531 crossref_primary_10_1109_LRA_2020_3038377 crossref_primary_10_3390_s23177552 crossref_primary_10_32604_cmc_2023_044253 crossref_primary_10_1016_j_inffus_2025_103462 crossref_primary_10_1109_LRA_2025_3583161 crossref_primary_10_1109_ACCESS_2021_3097116 crossref_primary_10_3390_s24051522 crossref_primary_10_3390_signals2040042 crossref_primary_10_3390_s20226467 crossref_primary_10_1109_LRA_2022_3192794 crossref_primary_10_1109_TASE_2025_3538328 crossref_primary_10_1016_j_jlp_2021_104623 crossref_primary_10_1016_j_cose_2024_103813 crossref_primary_10_1016_j_petrol_2022_110522 crossref_primary_10_1109_TIM_2023_3315420 crossref_primary_10_1016_j_nucengdes_2025_113956 crossref_primary_10_1007_s44443_025_00024_3 crossref_primary_10_1016_j_measurement_2025_118905 crossref_primary_10_3233_JIFS_222554 crossref_primary_10_1109_TSC_2024_3411481 crossref_primary_10_1016_j_cose_2024_103825 crossref_primary_10_26599_TST_2023_9010073 crossref_primary_10_1016_j_cie_2022_108559 crossref_primary_10_1016_j_compag_2025_110566 crossref_primary_10_1016_j_inffus_2022_08_011 crossref_primary_10_1109_ACCESS_2021_3107975 crossref_primary_10_1177_09287329251342392 crossref_primary_10_1109_TASE_2024_3452149 crossref_primary_10_3390_aerospace9080437 crossref_primary_10_1016_j_neunet_2025_107664 crossref_primary_10_1016_j_robot_2019_103344 crossref_primary_10_1016_j_neucom_2021_03_062 crossref_primary_10_1002_sdtp_18143 crossref_primary_10_1016_j_epsr_2020_106253 crossref_primary_10_1109_JIOT_2023_3289814 crossref_primary_10_1007_s11227_025_07044_w crossref_primary_10_1016_j_is_2024_102429 crossref_primary_10_1109_TNNLS_2023_3325667 crossref_primary_10_1016_j_isatra_2024_06_025 crossref_primary_10_1002_eng2_13021 crossref_primary_10_1061_JENMDT_EMENG_7635 crossref_primary_10_1007_s13042_024_02212_5 crossref_primary_10_3390_s25010190 crossref_primary_10_1109_TIFS_2024_3459631 crossref_primary_10_1109_ACCESS_2023_3276297 crossref_primary_10_1007_s11554_024_01459_z crossref_primary_10_1016_j_patcog_2022_109084 crossref_primary_10_3390_s22093468 crossref_primary_10_1007_s10489_025_06650_8 crossref_primary_10_1109_ACCESS_2021_3078553 crossref_primary_10_1109_TII_2024_3485808 crossref_primary_10_1109_ACCESS_2020_3000859 crossref_primary_10_1007_s11370_021_00355_w crossref_primary_10_1007_s10489_023_04764_5 crossref_primary_10_1109_TIM_2024_3369159 crossref_primary_10_1002_cend_202400053 crossref_primary_10_1038_s41598_023_31193_8 crossref_primary_10_1007_s10618_022_00911_7 crossref_primary_10_1109_TIFS_2025_3588674 crossref_primary_10_1109_TNNLS_2023_3262277 crossref_primary_10_1016_j_knosys_2024_111928 crossref_primary_10_1016_j_psep_2025_107066 crossref_primary_10_1109_TKDE_2023_3335317 crossref_primary_10_1007_s11063_020_10223_w crossref_primary_10_1007_s10846_021_01496_x crossref_primary_10_3390_s23052844 crossref_primary_10_1109_LRA_2021_3062597 crossref_primary_10_1016_j_cose_2023_103310 crossref_primary_10_3233_IDA_195075 crossref_primary_10_1002_stc_2948 crossref_primary_10_3390_aerospace7080115 crossref_primary_10_1016_j_future_2025_107751 crossref_primary_10_1109_ACCESS_2022_3147188 crossref_primary_10_3390_drones7050326 crossref_primary_10_1016_j_engappai_2025_111308 crossref_primary_10_1016_j_apor_2021_103030 crossref_primary_10_1109_JIOT_2025_3583424 crossref_primary_10_1016_j_knosys_2024_111507 crossref_primary_10_1016_j_comnet_2025_111729 crossref_primary_10_1016_j_cose_2023_103581 crossref_primary_10_1007_s10846_021_01312_6 crossref_primary_10_3390_math13071209 crossref_primary_10_1109_MGRS_2018_2853555 crossref_primary_10_1109_ACCESS_2024_3359413 crossref_primary_10_32604_cmc_2022_023641 crossref_primary_10_1007_s42979_021_00658_w crossref_primary_10_1016_j_jksuci_2024_102232 crossref_primary_10_3390_electronics14102068 crossref_primary_10_1016_j_eswa_2025_127379 crossref_primary_10_1016_j_measurement_2022_112171 crossref_primary_10_1016_j_neucom_2025_131385 crossref_primary_10_1007_s00170_023_11617_5 crossref_primary_10_1109_ACCESS_2022_3178592 crossref_primary_10_1109_ACCESS_2021_3064854 crossref_primary_10_1016_j_jnca_2025_104216 crossref_primary_10_1109_TRO_2024_3468768 crossref_primary_10_1007_s00521_023_08213_9 crossref_primary_10_1109_TNNLS_2023_3337876 crossref_primary_10_4018_IJISP_343306 crossref_primary_10_1109_TIM_2024_3440379 crossref_primary_10_1016_j_nucengdes_2024_112949 crossref_primary_10_1080_0951192X_2025_2452985 crossref_primary_10_1016_j_patcog_2024_110874 crossref_primary_10_1016_j_psep_2021_10_036 crossref_primary_10_1109_JIOT_2025_3558273 crossref_primary_10_32604_cmc_2024_053765 crossref_primary_10_1109_LRA_2025_3601037 crossref_primary_10_1007_s10489_025_06441_1 crossref_primary_10_1109_TR_2025_3528256 crossref_primary_10_1109_TIM_2020_2994012 crossref_primary_10_1007_s10489_025_06551_w crossref_primary_10_1007_s10618_023_00988_8 crossref_primary_10_1109_TII_2024_3381790 crossref_primary_10_1080_09540091_2022_2078281 crossref_primary_10_3390_s20133738 crossref_primary_10_1016_j_neunet_2024_106638 crossref_primary_10_1109_ACCESS_2021_3094243 crossref_primary_10_1016_j_ins_2024_120222 crossref_primary_10_3390_app122010390 crossref_primary_10_1109_TKDE_2024_3360640 crossref_primary_10_1109_JIOT_2023_3303946 crossref_primary_10_1080_03088839_2024_2388177 crossref_primary_10_1109_TC_2021_3065073 crossref_primary_10_1016_j_future_2023_02_015 crossref_primary_10_1016_j_robot_2022_104067 crossref_primary_10_1007_s00530_024_01472_z crossref_primary_10_1109_JIOT_2021_3100509 crossref_primary_10_1109_JSEN_2024_3509632 crossref_primary_10_1109_ACCESS_2024_3497755 crossref_primary_10_1109_JSTARS_2020_2964409 crossref_primary_10_1016_j_isatra_2023_09_002 crossref_primary_10_1109_TNNLS_2022_3162949 crossref_primary_10_1016_j_conengprac_2024_106164 crossref_primary_10_1145_3702978 crossref_primary_10_1049_csy2_12085 crossref_primary_10_3390_s25144358 crossref_primary_10_1016_j_jfoodeng_2024_111996 crossref_primary_10_1109_TII_2024_3393528 crossref_primary_10_1109_TAES_2024_3456748 crossref_primary_10_1007_s11227_023_05772_5 crossref_primary_10_1109_JIOT_2025_3577931 crossref_primary_10_1016_j_engappai_2024_109323 crossref_primary_10_1016_j_engappai_2024_109687 crossref_primary_10_3390_math11051204 crossref_primary_10_1016_j_jhydrol_2021_127221 crossref_primary_10_1109_JIOT_2025_3537864 crossref_primary_10_1016_j_is_2025_102524 crossref_primary_10_1002_cite_202200238 crossref_primary_10_1088_1361_6501_ad9495 crossref_primary_10_1109_ACCESS_2022_3216930 crossref_primary_10_3390_s23156660 crossref_primary_10_1016_j_patcog_2022_108945 crossref_primary_10_1109_JAS_2023_123423 crossref_primary_10_1016_j_inffus_2024_102255 crossref_primary_10_1007_s10489_022_04324_3 crossref_primary_10_3390_electronics14010065 crossref_primary_10_1016_j_rineng_2025_106801 crossref_primary_10_1371_journal_pone_0324543 crossref_primary_10_1145_3691338 crossref_primary_10_1109_TCE_2024_3376440 crossref_primary_10_1007_s10489_025_06606_y crossref_primary_10_1080_01691864_2022_2035253 crossref_primary_10_1007_s10844_025_00918_8 crossref_primary_10_1007_s10489_022_04337_y crossref_primary_10_1016_j_measurement_2021_109529 crossref_primary_10_1109_TGRS_2022_3155969 crossref_primary_10_3390_s24196414 crossref_primary_10_1109_LRA_2023_3250008 crossref_primary_10_1155_2022_4222827 crossref_primary_10_1109_JIOT_2023_3323620 crossref_primary_10_1002_cpe_70245 crossref_primary_10_1016_j_jfoodeng_2023_111448 crossref_primary_10_3390_electronics11233955 crossref_primary_10_1016_j_jmsy_2024_06_006 crossref_primary_10_1007_s11370_021_00398_z crossref_primary_10_1016_j_knosys_2023_111002 crossref_primary_10_3390_electronics12132763 crossref_primary_10_1515_auto_2023_0031 crossref_primary_10_1109_JIOT_2024_3520362 crossref_primary_10_1007_s00521_021_06017_3 crossref_primary_10_1016_j_jhydrol_2022_128127 crossref_primary_10_1016_j_anucene_2020_108077 crossref_primary_10_1016_j_measurement_2020_107890 crossref_primary_10_1016_j_aei_2024_102357 crossref_primary_10_1016_j_neucom_2024_128428 crossref_primary_10_1109_JSEN_2020_2995271 crossref_primary_10_3390_electronics14071401 crossref_primary_10_1109_ACCESS_2025_3549402 crossref_primary_10_1109_JSEN_2024_3452955 crossref_primary_10_1109_TKDE_2024_3466291 crossref_primary_10_1109_LRA_2021_3074084 crossref_primary_10_1002_2050_7038_12103 crossref_primary_10_3390_math12243969 crossref_primary_10_1016_j_asr_2024_09_050 crossref_primary_10_1016_j_jmsy_2025_07_002 crossref_primary_10_1016_j_patcog_2024_110826 crossref_primary_10_1016_j_aei_2025_103620 crossref_primary_10_1109_JPROC_2021_3052449 crossref_primary_10_1109_JIOT_2024_3443910 crossref_primary_10_1177_02783649241297998 crossref_primary_10_1007_s13042_024_02482_z crossref_primary_10_1016_j_engappai_2024_108663 crossref_primary_10_1109_JIOT_2024_3414492 crossref_primary_10_3233_JIFS_200175 crossref_primary_10_1007_s10462_025_11108_x crossref_primary_10_1016_j_eswa_2025_129049 crossref_primary_10_1016_j_jfranklin_2024_107199 crossref_primary_10_1109_JSEN_2021_3105226 crossref_primary_10_1109_TII_2023_3288226 crossref_primary_10_1109_TIM_2022_3223142 crossref_primary_10_1016_j_asoc_2022_109903 crossref_primary_10_1109_ACCESS_2024_3522325 crossref_primary_10_1109_TII_2022_3231923 crossref_primary_10_1007_s10618_023_00985_x crossref_primary_10_1109_TNNLS_2024_3439404 crossref_primary_10_1007_s13369_025_10300_z crossref_primary_10_1016_j_psep_2024_04_012 crossref_primary_10_3390_ai6090215 crossref_primary_10_3390_app15105623 crossref_primary_10_1109_ACCESS_2022_3167640 crossref_primary_10_1121_10_0034831 crossref_primary_10_3390_electronics13112032 crossref_primary_10_1080_08839514_2025_2538519 crossref_primary_10_1016_j_jfoodeng_2025_112818 crossref_primary_10_1016_j_future_2025_108126 crossref_primary_10_1109_TKDE_2024_3475809 crossref_primary_10_1371_journal_pone_0286770 crossref_primary_10_1007_s10115_024_02107_5 crossref_primary_10_1016_j_ijcip_2023_100612 crossref_primary_10_1038_s41598_024_51374_3 crossref_primary_10_1016_j_engappai_2024_108684 crossref_primary_10_1007_s11227_025_07455_9 crossref_primary_10_1109_TON_2025_3540091 crossref_primary_10_1016_j_jobe_2023_107605 crossref_primary_10_1080_00207543_2023_2175591 crossref_primary_10_1007_s42417_025_01814_9 crossref_primary_10_1109_TVT_2023_3285599 crossref_primary_10_1016_j_eswa_2024_124348 crossref_primary_10_1007_s11036_023_02204_9 crossref_primary_10_3390_electronics12194146 crossref_primary_10_1109_JSEN_2023_3327138 crossref_primary_10_1016_j_eswa_2023_120818 crossref_primary_10_1109_JIOT_2023_3262612 crossref_primary_10_1177_14759217251369727 crossref_primary_10_1016_j_asoc_2023_111169 crossref_primary_10_1080_01969722_2023_2240651 crossref_primary_10_1109_TIM_2024_3493890 crossref_primary_10_3390_s24020569 crossref_primary_10_1016_j_istruc_2025_109092 crossref_primary_10_1109_ACCESS_2024_3415088 crossref_primary_10_1007_s00530_023_01199_3 crossref_primary_10_1109_ACCESS_2023_3289921 crossref_primary_10_1016_j_dsp_2024_104518 crossref_primary_10_1109_TNSM_2019_2919327 crossref_primary_10_1016_j_asoc_2025_113761 crossref_primary_10_1016_j_cose_2025_104461 crossref_primary_10_1177_00368504211021192 crossref_primary_10_1186_s13677_025_00766_5 crossref_primary_10_1007_s11227_023_05534_3 crossref_primary_10_1109_TASE_2020_3042158 crossref_primary_10_1109_ACCESS_2019_2895394 crossref_primary_10_1016_j_amar_2022_100212 crossref_primary_10_1109_TNSRE_2023_3328888 crossref_primary_10_1177_16878140211013138 crossref_primary_10_1016_j_compag_2023_108252 crossref_primary_10_3390_electronics11152306 crossref_primary_10_1109_JSEN_2025_3530007 crossref_primary_10_1007_s00500_023_08467_4 crossref_primary_10_1109_JSAC_2022_3191341 crossref_primary_10_1002_rob_22156 crossref_primary_10_1109_JIOT_2024_3414304 crossref_primary_10_1109_TIM_2024_3398110 crossref_primary_10_3390_app121910078 crossref_primary_10_1016_j_neunet_2023_11_023 crossref_primary_10_1007_s10489_025_06481_7 crossref_primary_10_1109_ACCESS_2022_3213038 crossref_primary_10_3390_e23010083 crossref_primary_10_3390_s25020310 crossref_primary_10_3390_s23031104 crossref_primary_10_1109_TGRS_2020_3019313 crossref_primary_10_1016_j_psep_2024_04_052 crossref_primary_10_1109_ACCESS_2024_3371891 crossref_primary_10_1016_j_compind_2023_104024 crossref_primary_10_1016_j_ress_2018_11_027 crossref_primary_10_1109_TII_2022_3216006 crossref_primary_10_3390_s23104764 crossref_primary_10_1016_j_ress_2023_109717 crossref_primary_10_1109_TCC_2024_3466174 crossref_primary_10_1109_JIOT_2024_3448429 crossref_primary_10_1016_j_neucom_2025_129887 crossref_primary_10_1007_s11063_021_10610_x crossref_primary_10_1016_j_measurement_2025_117497 |
| Cites_doi | 10.1145/1390156.1390294 10.1007/s10846-013-0014-5 10.18653/v1/K16-1002 10.1162/neco.1997.9.8.1735 10.15607/RSS.2015.XI.044 10.1109/HSI.2008.4581481 10.1109/ICRA.2015.7139892 10.1109/ICRA.2012.6225358 10.1109/ICRA.2016.7487160 10.1109/COASE.2010.5584452 10.1177/0278364912471865 10.1109/TR.2017.2715180 10.1137/1.9781611972818.1 10.3115/v1/D14-1179 10.1016/j.robot.2014.03.003 10.1109/TASE.2014.2378150 10.1126/science.1127647 10.1109/IJCNN.2017.7966273 10.1145/1541880.1541882 10.1109/IROS.2011.6095100 10.1109/MRA.2012.2229950 10.1109/DSAA.2015.7344872 10.1109/IROS.2014.6943078 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2018.2801475 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 1551 |
| ExternalDocumentID | 10_1109_LRA_2018_2801475 8279425 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NIDILRR grantid: 90RE5016-01-00 – fundername: Google Faculty Research Award – fundername: NSF grantid: IIS-1150157 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c272t-7cee1f39e69447c391e5754b3465813fee460b2c77bc0f9d331083d4cb7435713 |
| IEDL.DBID | RIE |
| ISSN | 2377-3766 |
| IngestDate | Sun Nov 09 08:13:12 EST 2025 Tue Nov 18 21:40:01 EST 2025 Sat Nov 29 06:03:00 EST 2025 Wed Aug 27 02:48:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-7cee1f39e69447c391e5754b3465813fee460b2c77bc0f9d331083d4cb7435713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1287-9433 0000-0003-4720-1136 0000-0002-2448-2310 |
| PQID | 2299372531 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_LRA_2018_2801475 proquest_journals_2299372531 ieee_primary_8279425 crossref_citationtrail_10_1109_LRA_2018_2801475 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref15 ref14 chollet (ref32) 2015 malhotra (ref23) 0 hinton (ref17) 2006; 313 ref33 ref11 ref10 ref2 ref16 ref19 ref18 karl (ref31) 2017 bayer (ref27) 2014 park (ref4) 0 im (ref30) 0 sölch (ref28) 2016 ref24 ref25 malhotra (ref22) 0 park (ref34) 0 ref21 o'shea (ref20) 2016 ref29 ref8 ref7 ref9 park (ref1) 0 ref3 ref6 ref5 kingma (ref26) 2014 an (ref36) 2015 |
| References_xml | – start-page: 2059 year: 0 ident: ref30 article-title: Denoising criterion for variational auto-encoding framework publication-title: Proc AAAI – ident: ref5 doi: 10.1145/1390156.1390294 – ident: ref12 doi: 10.1007/s10846-013-0014-5 – ident: ref29 doi: 10.18653/v1/K16-1002 – ident: ref19 doi: 10.1162/neco.1997.9.8.1735 – ident: ref9 doi: 10.15607/RSS.2015.XI.044 – year: 2017 ident: ref31 article-title: Deep variational Bayes filters: Unsupervised learning of state space models from raw data publication-title: Proc Int Conf Learn Represent – year: 2014 ident: ref27 article-title: Learning stochastic recurrent networks publication-title: Proc NIPS 2014 Workshop Advances Variational Inf – ident: ref35 doi: 10.1109/HSI.2008.4581481 – ident: ref14 doi: 10.1109/ICRA.2015.7139892 – year: 2015 ident: ref36 article-title: Variational autoencoder based anomaly detection using reconstruction probability – ident: ref15 doi: 10.1109/ICRA.2012.6225358 – ident: ref3 doi: 10.1109/ICRA.2016.7487160 – year: 2016 ident: ref20 article-title: Recurrent neural radio anomaly detection publication-title: arXiv 1611 00301 – year: 2014 ident: ref26 article-title: Auto-encoding variational Bayes publication-title: Proc Int Conf Learn Represent – year: 2016 ident: ref28 article-title: Variational inference for on-line anomaly detection in high-dimensional time series publication-title: Proc ICML 2016 Anomaly Detection Workshop – ident: ref10 doi: 10.1109/COASE.2010.5584452 – ident: ref33 doi: 10.1177/0278364912471865 – start-page: 5406 year: 0 ident: ref34 article-title: Multimodal execution monitoring for robot-assisted feeding publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst – ident: ref16 doi: 10.1109/TR.2017.2715180 – year: 0 ident: ref1 article-title: Towards assistive feeding with a general-purpose mobile manipulator publication-title: Proc IEEE Int Conf Robot Autom -Workshop Human-Robot Interfaces Enhanced Phys Interactions – ident: ref13 doi: 10.1137/1.9781611972818.1 – ident: ref24 doi: 10.3115/v1/D14-1179 – ident: ref18 doi: 10.1016/j.robot.2014.03.003 – ident: ref7 doi: 10.1109/TASE.2014.2378150 – volume: 313 start-page: 504 year: 2006 ident: ref17 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – start-page: 89 year: 0 ident: ref22 article-title: Long short term memory networks for anomaly detection in time series publication-title: Eur Symp on Artif Neural Netw Computat Intell Mach Learning – ident: ref25 doi: 10.1109/IJCNN.2017.7966273 – ident: ref6 doi: 10.1145/1541880.1541882 – year: 0 ident: ref23 article-title: LSTM-based encoder-decoder for multi-sensor anomaly detection publication-title: Proc Anomaly Detection Workshop 33rd Int Conf Mach Learn – year: 2015 ident: ref32 article-title: Keras – year: 0 ident: ref4 article-title: Multimodal anomaly detection for assistive robots – ident: ref8 doi: 10.1109/IROS.2011.6095100 – ident: ref2 doi: 10.1109/MRA.2012.2229950 – ident: ref21 doi: 10.1109/DSAA.2015.7344872 – ident: ref11 doi: 10.1109/IROS.2014.6943078 |
| SSID | ssj0001527395 |
| Score | 2.5647907 |
| Snippet | The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1544 |
| SubjectTerms | Anomalies Anomaly detection assistive robots Decoding deep learning in robotics and automation Detectors Failure detection and recovery Gaussian distribution Hazards Hidden Markov models Robot sensing systems Robots Sensors |
| Title | A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder |
| URI | https://ieeexplore.ieee.org/document/8279425 https://www.proquest.com/docview/2299372531 |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB1RxAEOyy4fotCtfOCChGlqO3F8LLtUeygI8SVuUWxPJCRIViVF4sJvx3bSggRC4paDHUV5tufNeOYNwH5sGM-V4NT33KYiSXKaayNokufGmSuLDAPSE3l2lt7eqvMlOFzUwiBiSD7DI_8Y7vJtZWY-VDZImVs9LO5AR0rZ1Gq9xVO8kpiK5zeRkRpMLkY-dSs9Yl4hxScSvrM8oZXKh_M3GJXx-vc-5yf8aMkjGTVo_4IlLDdg7Z2k4CbYEQk1tQ-V9SPL6iG_fyZ_sQ7ReeIoKrmodFVTh4tH2JJxY79ISB4geUkml1en9NhZN0tunCfdRgvJaFZXXvXS4nQLrscnV3_-0baTAjVMsppKZwqHBVeYKCGk4WqIjqYJzYUjIENeIIok0sxIqU1UKMsd6Uu5FUY7ghE7P3YblsuqxB0gyHMcCvQyXlbEUaG15UWqbeo8H-Xcoy4M5n85M63MuO92cZ8FdyNSmcMl87hkLS5dOFjM-N9IbHwxdtPjsBjXQtCF3hzIrN2Djxljnnsxd8jsfj5rD1b9u5vk2x4s19MZ_oYV81TfPU770Dl9OemHRfYK4VrOlg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xqAQ98ChFXZ4-cKmE2cR2Hj4ujxWIsEJ0qbhFsT2RKkFSLdlK_HtsJ7tFoqrELQdbifLZnm_GM98AHEWa8UIKTl3PbSriuKCF0oLGRaGtuTLI0COdJaNR-vAgbxfgeF4Lg4g--QxP3KO_yze1nrpQWT9ldvWwaBGWIyFY2FZr_Y2oOC0xGc3uIgPZz-4GLnkrPWFOI8WlEr6xPb6ZyrsT2JuV4frHPmgD1jr6SAYt3puwgNUX-PxGVHALzID4qtqn2riRVf1UPL6Qc2x8fJ5YkkrualU31CLjMDZk2Fow4tMHSFGR7Mf4hp5a-2bIT-tLd_FCMpg2tdO9NDj5CvfDi_HZJe16KVDNEtbQxBrDsOQSYylEorkM0RI1obiwFCTkJaKIA8V0kigdlNJwS_tSboRWlmJE1pPdhqWqrvAbEOQFhgKdkJcRUVAqZXiZKpNa30daB6kH_dlfznUnNO76XTzm3uEIZG5xyR0ueYdLD77PZ_xuRTb-M3bL4TAf10HQg70ZkHm3C59zxhz7YvaY2fn3rENYuRzfZHl2NbrehVX3njYVdw-WmskU9-GT_tP8ep4c-KX2CuRt0Kw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multimodal+Anomaly+Detector+for+Robot-Assisted+Feeding+Using+an+LSTM-Based+Variational+Autoencoder&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Park%2C+Daehyung&rft.au=Hoshi%2C+Yuuna&rft.au=Kemp%2C+Charles+C&rft.date=2018-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=3&rft.issue=3&rft.spage=1544&rft_id=info:doi/10.1109%2FLRA.2018.2801475&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |