A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder

The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for detecting a wide range of anomalies. However, the fusion of high-dimensional and heterogeneous modalities is a challenging problem for model-based...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 3; no. 3; pp. 1544 - 1551
Main Authors: Daehyung Park, Hoshi, Yuuna, Kemp, Charles C.
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for detecting a wide range of anomalies. However, the fusion of high-dimensional and heterogeneous modalities is a challenging problem for model-based anomaly detection. We introduce a long short-term memory-based variational autoencoder (LSTM-VAE) that fuses signals and reconstructs their expected distribution by introducing a progress-based varying prior. Our LSTM-VAE-based detector reports an anomaly when a reconstruction-based anomaly score is higher than a state-based threshold. For evaluations with 1555 robot-assisted feeding executions, including 12 representative types of anomalies, our detector had a higher area under the receiver operating characteristic curve of 0.8710 than 5 other baseline detectors from the literature. We also show the variational autoencoding and state-based thresholding are effective in detecting anomalies from 17 raw sensory signals without significant feature engineering effort.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2018.2801475