Common abductive explanations in first order logic

We build upon a recent definition of a common explanation for the label shared by a group of observations. The motivation stems from explaining how a specific action, when playing a card game, leads to an acceptable reward at the end of the game. Since there are various ways to achieve this goal, gr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 114; číslo 12; s. 264
Hlavní autoři: Rouveirol, Céline, Soldano, Henry, Kazi Aoual, Malik, Ventos, Véronique
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2025
Springer Nature B.V
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We build upon a recent definition of a common explanation for the label shared by a group of observations. The motivation stems from explaining how a specific action, when playing a card game, leads to an acceptable reward at the end of the game. Since there are various ways to achieve this goal, groups of acceptable trajectories are first extracted from a rule-based ILP model. Subsequently, common explanations are enumerated for each group of trajectories. A significant contribution of this article is the introduction of a new definition of preferred common explanations: they must be both subset-minimal and maximally instantiated. These so-called leq-minimal common explanations ( leq-MCE s for short) happen to be subsets of the least general generalisation of the observations in the group. We propose efficient algorithms to enumerate leq-MCE s and a scheme to extract a diverse subset of these leq-MCEs to be presented to human interlocutors. Experiments are conducted on a card game.
AbstractList We build upon a recent definition of a common explanation for the label shared by a group of observations. The motivation stems from explaining how a specific action, when playing a card game, leads to an acceptable reward at the end of the game. Since there are various ways to achieve this goal, groups of acceptable trajectories are first extracted from a rule-based ILP model. Subsequently, common explanations are enumerated for each group of trajectories. A significant contribution of this article is the introduction of a new definition of preferred common explanations: they must be both subset-minimal and maximally instantiated. These so-called leq-minimal common explanations (leq-MCEs for short) happen to be subsets of the least general generalisation of the observations in the group. We propose efficient algorithms to enumerate leq-MCEs and a scheme to extract a diverse subset of these leq-MCEs to be presented to human interlocutors. Experiments are conducted on a card game.
We build upon a recent definition of a common explanation for the label shared by a group of observations. The motivation stems from explaining how a specific action, when playing a card game, leads to an acceptable reward at the end of the game. Since there are various ways to achieve this goal, groups of acceptable trajectories are first extracted from a rule-based ILP model. Subsequently, common explanations are enumerated for each group of trajectories. A significant contribution of this article is the introduction of a new definition of preferred common explanations: they must be both subset-minimal and maximally instantiated. These so-called leq-minimal common explanations ( leq-MCE s for short) happen to be subsets of the least general generalisation of the observations in the group. We propose efficient algorithms to enumerate leq-MCE s and a scheme to extract a diverse subset of these leq-MCEs to be presented to human interlocutors. Experiments are conducted on a card game.
ArticleNumber 264
Author Kazi Aoual, Malik
Ventos, Véronique
Rouveirol, Céline
Soldano, Henry
Author_xml – sequence: 1
  givenname: Céline
  surname: Rouveirol
  fullname: Rouveirol, Céline
  organization: LIPN, UMR-CNRS 7030, Université Sorbonne Paris-Nord
– sequence: 2
  givenname: Henry
  surname: Soldano
  fullname: Soldano, Henry
  email: soldano@lipn.univ-paris13.fr
  organization: NukkAI, LIPN, UMR-CNRS 7030, Université Sorbonne Paris-Nord
– sequence: 3
  givenname: Malik
  surname: Kazi Aoual
  fullname: Kazi Aoual, Malik
  organization: NukkAI, LIPN, UMR-CNRS 7030, Université Sorbonne Paris-Nord
– sequence: 4
  givenname: Véronique
  surname: Ventos
  fullname: Ventos, Véronique
  organization: NukkAI
BookMark eNp9kE1LxDAURYOM4MzoH3BVcB19SZukXcrgFwy40XVI0mTo0CZj0orOrzdawZ2rtzn3Xt5ZoYUP3iJ0SeCaAIibRKBpKgyUYeA1b_DxBC0JEyUGxtkCLaGuGeaEsjO0SmkPADRzS0Q3YRiCL5RuJzN277awH4deeTV2waei84XrYhqLEFsbiz7sOnOOTp3qk734vWv0en_3snnE2-eHp83tFhsq6IiFblzV0hoqLRqgUIETmoEpLXcCHPC2dhp0C61uFDe10sxQyhQBQzijqlyjq7n3EMPbZNMo92GKPk_KknJOqvwzyRSdKRNDStE6eYjdoOKnJCC_3cjZjcxu5I8becyhcg6lDPudjX_V_6S-ADCLaMQ
Cites_doi 10.1007/978-3-319-45763-5_4
10.1023/A:1009863704807
10.1007/s10472-012-9324-8
10.1023/A:1009867806624
10.1609/aaai.v37i4.25528
10.1016/j.artint.2020.103367
10.1145/3616864
10.1145/2939672.2939778
10.1007/978-3-642-31365-3_17
10.3233/FAIA230261
10.1609/icaps.v19i1.13365
10.1007/978-3-642-03915-7_34
10.1609/aaai.v36i5.20507
10.1007/978-3-031-44070-0_19
10.1007/3-540-62927-0
10.3233/FI-2009-0004
10.1609/aaai.v38i9.28844
10.3233/AIC-2010-0465
10.1016/0743-1066(94)90035-3
10.1007/978-3-642-13840-9_13
10.24963/ijcai.2022/91
10.1007/3-540-45628-7_16
10.1007/978-3-031-45072-3_15
10.1609/aaai.v32i1.11491
10.1007/3-540-54507-7_12
10.1007/s10994-021-06048-w
10.1007/BF03037227
10.1613/jair.1.13575
10.1609/aaai.v33i01.33011511
10.1007/978-3-030-36683-4_19
10.24963/ijcai.2021/356
10.1007/BF03037231
10.1609/aaai.v33i01.33013052
10.1016/j.datak.2022.102088
10.1609/aaai.v36i11.21499
10.24963/kr.2021/34
10.1137/1.9781611972757.23
10.1613/jair.1.13507
10.1007/3-540-56602-3_124
10.3233/FAIA200158
10.1007/s10994-020-05941-0
10.1016/0004-3702(93)90069-N
10.1016/j.artint.2021.103500
10.1007/978-3-642-38812-5_9
10.1016/j.artint.2018.07.007
10.24963/ijcai.2018/708
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10994-025-06869-z
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
ExternalDocumentID 10_1007_s10994_025_06869_z
GrantInformation_xml – fundername: Association Nationale de la Recherche et de la Technologie
  funderid: http://dx.doi.org/10.13039/501100003032
GroupedDBID -~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF-
PT4
QM1
QN7
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z8Z
ZMTXR
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
88I
8AO
8FE
8FG
AAEWM
AAOBN
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
ADMLS
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGQPQ
AJBLW
AMVHM
ARAPS
ARCSS
AZQEC
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FINBP
FSGXE
GNUQQ
H13
HCIFZ
I-F
ITG
ITH
K6V
K7-
KOW
M2P
MVM
N2Q
NDZJH
NU0
O9-
OVD
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
Q2X
QF4
QO4
R4E
RNI
RZC
RZE
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-7b9f4d2804b7902040f7b50c3e6f70f06d8fb0bd0db9a6c8ab5c225a10c1652a3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001602747400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Wed Nov 05 03:59:47 EST 2025
Sat Nov 29 07:04:31 EST 2025
Wed Oct 29 01:25:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Inductive logic programming
Abductive explanation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-7b9f4d2804b7902040f7b50c3e6f70f06d8fb0bd0db9a6c8ab5c225a10c1652a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3266141091
PQPubID 54194
ParticipantIDs proquest_journals_3266141091
crossref_primary_10_1007_s10994_025_06869_z
springer_journals_10_1007_s10994_025_06869_z
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 6869_CR20
6869_CR21
6869_CR22
L Dehaspe (6869_CR11) 1999; 3
6869_CR24
6869_CR25
6869_CR26
6869_CR27
Y Izza (6869_CR23) 2022; 75
6869_CR28
6869_CR29
H Nabeshima (6869_CR36) 2010; 23
S Muggleton (6869_CR35) 1994; 19
6869_CR50
T Miller (6869_CR31) 2019; 267
6869_CR51
6869_CR53
6869_CR10
GD Plotkin (6869_CR39) 1970; 5
6869_CR54
6869_CR55
6869_CR12
6869_CR13
6869_CR16
6869_CR19
RS Sutton (6869_CR52) 1998
6869_CR4
G Gottlob (6869_CR17) 1993; 61
6869_CR3
6869_CR7
6869_CR40
6869_CR41
6869_CR43
6869_CR44
6869_CR45
GC Garriga (6869_CR15) 2013; 69
6869_CR47
S Ferilli (6869_CR14) 2009; 90
6869_CR48
L Ai (6869_CR1) 2021; 110
6869_CR49
SH Muggleton (6869_CR34) 1995; 13
H Blockeel (6869_CR6) 1999; 3
J Rabold (6869_CR42) 2022; 111
WW Cohen (6869_CR8) 1995; 13
S Arora (6869_CR2) 2021; 297
R Guidotti (6869_CR18) 2019; 51
6869_CR32
6869_CR33
G Audemard (6869_CR5) 2022; 142
6869_CR37
A Cropper (6869_CR9) 2022; 74
6869_CR38
S Milani (6869_CR30) 2024; 56
P Sequeira (6869_CR46) 2020; 288
References_xml – ident: 6869_CR50
  doi: 10.1007/978-3-319-45763-5_4
– volume: 3
  start-page: 7
  issue: 1
  year: 1999
  ident: 6869_CR11
  publication-title: Data Mining & Knowledge Discovery
  doi: 10.1023/A:1009863704807
– volume: 69
  start-page: 315
  issue: 4
  year: 2013
  ident: 6869_CR15
  publication-title: Annals of Mathematics and Artificial Intelligence
  doi: 10.1007/s10472-012-9324-8
– volume: 3
  start-page: 59
  year: 1999
  ident: 6869_CR6
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009867806624
– ident: 6869_CR55
  doi: 10.1609/aaai.v37i4.25528
– volume: 288
  year: 2020
  ident: 6869_CR46
  publication-title: Artififical Intelligence
  doi: 10.1016/j.artint.2020.103367
– ident: 6869_CR32
– volume: 56
  start-page: 1
  issue: 7
  year: 2024
  ident: 6869_CR30
  publication-title: ACM Computing Surveys
  doi: 10.1145/3616864
– ident: 6869_CR43
  doi: 10.1145/2939672.2939778
– ident: 6869_CR13
  doi: 10.1007/978-3-642-31365-3_17
– ident: 6869_CR4
  doi: 10.3233/FAIA230261
– ident: 6869_CR24
  doi: 10.1609/icaps.v19i1.13365
– ident: 6869_CR53
  doi: 10.1007/978-3-642-03915-7_34
– volume: 51
  start-page: 93
  issue: 5
  year: 2019
  ident: 6869_CR18
  publication-title: ACM ACM Computing Surveys
– ident: 6869_CR16
  doi: 10.1609/aaai.v36i5.20507
– ident: 6869_CR40
  doi: 10.1007/978-3-031-44070-0_19
– ident: 6869_CR27
– ident: 6869_CR37
  doi: 10.1007/3-540-62927-0
– volume: 90
  start-page: 43
  year: 2009
  ident: 6869_CR14
  publication-title: Fundamenta Informaticae
  doi: 10.3233/FI-2009-0004
– ident: 6869_CR26
  doi: 10.1609/aaai.v38i9.28844
– volume: 23
  start-page: 183
  issue: 2–3
  year: 2010
  ident: 6869_CR36
  publication-title: AI Communications
  doi: 10.3233/AIC-2010-0465
– volume: 19
  start-page: 629
  issue: 20
  year: 1994
  ident: 6869_CR35
  publication-title: Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– ident: 6869_CR33
  doi: 10.1007/978-3-642-13840-9_13
– ident: 6869_CR54
– ident: 6869_CR3
  doi: 10.24963/ijcai.2022/91
– ident: 6869_CR12
  doi: 10.1007/3-540-45628-7_16
– ident: 6869_CR45
  doi: 10.1007/978-3-031-45072-3_15
– ident: 6869_CR44
  doi: 10.1609/aaai.v32i1.11491
– ident: 6869_CR29
  doi: 10.1007/3-540-54507-7_12
– volume: 111
  start-page: 1799
  issue: 5
  year: 2022
  ident: 6869_CR42
  publication-title: Machine Learning
  doi: 10.1007/s10994-021-06048-w
– ident: 6869_CR38
– volume: 13
  start-page: 245
  issue: 3 &4
  year: 1995
  ident: 6869_CR34
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– volume: 5
  start-page: 153
  year: 1970
  ident: 6869_CR39
  publication-title: Machine Intelligence
– volume: 75
  start-page: 261
  year: 2022
  ident: 6869_CR23
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.13575
– ident: 6869_CR20
  doi: 10.1609/aaai.v33i01.33011511
– ident: 6869_CR49
  doi: 10.1007/978-3-030-36683-4_19
– ident: 6869_CR22
  doi: 10.24963/ijcai.2021/356
– ident: 6869_CR21
– volume: 13
  start-page: 369
  year: 1995
  ident: 6869_CR8
  publication-title: New Generation Computing
  doi: 10.1007/BF03037231
– ident: 6869_CR47
  doi: 10.1609/aaai.v33i01.33013052
– volume: 142
  year: 2022
  ident: 6869_CR5
  publication-title: Data & Knowledge Engineering
  doi: 10.1016/j.datak.2022.102088
– ident: 6869_CR28
  doi: 10.1609/aaai.v36i11.21499
– volume-title: Reinforcement Learning: An Introduction
  year: 1998
  ident: 6869_CR52
– ident: 6869_CR19
  doi: 10.24963/kr.2021/34
– ident: 6869_CR7
  doi: 10.1137/1.9781611972757.23
– volume: 74
  start-page: 765
  year: 2022
  ident: 6869_CR9
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.13507
– ident: 6869_CR41
  doi: 10.1007/3-540-56602-3_124
– ident: 6869_CR10
  doi: 10.3233/FAIA200158
– volume: 110
  start-page: 695
  issue: 4
  year: 2021
  ident: 6869_CR1
  publication-title: Machine Learning
  doi: 10.1007/s10994-020-05941-0
– ident: 6869_CR51
– volume: 61
  start-page: 263
  issue: 2
  year: 1993
  ident: 6869_CR17
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(93)90069-N
– volume: 297
  year: 2021
  ident: 6869_CR2
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2021.103500
– ident: 6869_CR25
  doi: 10.1007/978-3-642-38812-5_9
– volume: 267
  start-page: 1
  year: 2019
  ident: 6869_CR31
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2018.07.007
– ident: 6869_CR48
  doi: 10.24963/ijcai.2018/708
SSID ssj0002686
Score 2.4756737
Snippet We build upon a recent definition of a common explanation for the label shared by a group of observations. The motivation stems from explaining how a specific...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 264
SubjectTerms Algorithms
Artificial Intelligence
Card games
Computer Science
Control
Decision trees
Logic
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Robotics
Simulation and Modeling
Title Common abductive explanations in first order logic
URI https://link.springer.com/article/10.1007/s10994-025-06869-z
https://www.proquest.com/docview/3266141091
Volume 114
WOSCitedRecordID wos001602747400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFL1odeHG-sRqlSzcaSCTmTxmKaK4KuKL7kIymUBBpqVTRfr1JumMVdGFrieEcOa-SO49B-BUOJHmoXJzQlucUeuwLo3GJhiAS3wCtFkUmxCDgRwO89tmKKxuu93bJ8kYqT8Nu0UaW8qCUArP8XwV1ny6k0Gw4e7-6SP-Uh71Hb37MBzydzMq8_MeX9PRssb89iwas81193_n3ILNprpEFwtz2IaVstqBbqvcgBpH3gUa5kLGFdIm0L36gIfKt8mzXtwM1mhUITfyZSGKxJwohsc9eLy-eri8wY16Ai6ooDMsTO4ySyXJjMjDCCxxwjBSpCV3gjjCrXSGGEusyTUvpDas8M6tE1IknFGd7kOnGlflASBnHAsNnJzLJLNWmlRzTW2SsdQmZWF7cNaCqCYLkgy1pEMOcCgPh4pwqHkP-i3OqnGYWqWxUAgspT04b3Fdfv59t8O_LT-CDRp-TWxI6UNnNn0pj2G9eJ2N6ulJNKR34nnDUg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqXnwTQNp2ibto4hj4hyiU_YWkqaBgnRjnSL7622y1qnogz43hPD17r4jufsO4JQb7sc2czNcahxQbbBMlcTKGoDxSgLUgRs2wfv9aDiM76qmsKKudq-fJF2k_tTs5mRsaWgHpbAYz5ZhJSgZyyrm3z88fcRfytx8x9J9Qmz5u2qV-XmPr3S0yDG_PYs6tuk0_3fOTdioskt0MTeHLVhK821o1pMbUOXIO0BtX8goR1JZudcy4KH0bfws5zeDBcpyZLIyLUROmBO58LgLj52rwWUXV9MTcEI5nWKuYhNoGpFA8di2wBLDVUgSP2WGE0OYjowiShOtYsmSSKowKZ1beiTxWEilvweNfJSn-4CMMqEt4GQs8gKtI-VLJqn2gtDXXproFpzVIIrxXCRDLOSQLRyihEM4OMSsBe0aZ1E5TCF8lyhYldIWnNe4Lj7_vtvB35afwFp3cNsTvev-zSGsU_ubXHFKGxrTyUt6BKvJ6zQrJsfOqN4BFQrGNg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHFecXp1Dz4pmFp2ibto6hDUcbAC3sLSdPAQLqxVZH9epu0dVP0QXxuCeXruSU533cATrnhfmwrN8OlxgHVBstUSaysARivSIA6cMMmeK8XDQZxf4HF77rd6yvJktNgVZqyvDPWprNAfHOStjS0Q1NYjGfLsBLYRnq7X394_ozFlLlZj4Urhdjm8oo28_MaX1PTvN78dkXqMk-3-f9v3oSNqupEF6WZbMFSmm1Ds57ogCoH3wFq-SKjDEllZWCLQIjS9_GLLE8Mp2iYITMsykXkBDuRC5u78NS9fry8wdVUBZxQTnPMVWwCTSMSKB5baiwxXIUk8VNmODGE6cgoojTRKpYsiaQKk8LppUcSj4VU-nvQyEZZug_IKBPaxk7GIi_QOlK-ZJJqLwh97aWJbsFZDagYl-IZYi6TbOEQBRzCwSFmLWjXmIvKkabCdwWEVS9twXmN8fzx76sd_O31E1jrX3XF_W3v7hDWqf1LrmelDY188poewWrylg-nk2NnXx-wS88a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+abductive+explanations+in+first+order+logic&rft.jtitle=Machine+learning&rft.au=Rouveirol%2C+C%C3%A9line&rft.au=Soldano%2C+Henry&rft.au=Kazi+Aoual%2C+Malik&rft.au=Ventos%2C+V%C3%A9ronique&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=114&rft.issue=12&rft.spage=264&rft_id=info:doi/10.1007%2Fs10994-025-06869-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon