Inertial Stochastic Reflected Forward Backward Method with Applications to Traffic Network Problems

This paper introduces a new inertial stochastic reflected-forward-backward splitting method aimed at addressing monotone inclusion problems, specifically involving a maximal monotone set-valued operator and a single-valued Lipschitz continuous and monotone operator within a real separable Hilbert sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 207; H. 2; S. 23
Hauptverfasser: Izuchukwu, Chinedu, Alakoya, Timilehin Opeyemi, Moutari, Salissou, Zeng, Shengda
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2025
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a new inertial stochastic reflected-forward-backward splitting method aimed at addressing monotone inclusion problems, specifically involving a maximal monotone set-valued operator and a single-valued Lipschitz continuous and monotone operator within a real separable Hilbert space. Distinct from many existing inertial splitting approaches, this algorithm uniquely depends on one unbiased estimate of the monotone Lipschitz continuous operator and a single backward computation of the maximal monotone operator per iteration. We establish a convergence rate of O ( log ( i ) / ( i ) ) in expectation for a case of strong monotonicity, and almost sure convergence for a general monotone scenario. Furthermore, we examine its application to traffic flow networks.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-025-02779-1