Inertial Stochastic Reflected Forward Backward Method with Applications to Traffic Network Problems
This paper introduces a new inertial stochastic reflected-forward-backward splitting method aimed at addressing monotone inclusion problems, specifically involving a maximal monotone set-valued operator and a single-valued Lipschitz continuous and monotone operator within a real separable Hilbert sp...
Gespeichert in:
| Veröffentlicht in: | Journal of optimization theory and applications Jg. 207; H. 2; S. 23 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.11.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0022-3239, 1573-2878 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper introduces a new inertial stochastic reflected-forward-backward splitting method aimed at addressing monotone inclusion problems, specifically involving a maximal monotone set-valued operator and a single-valued Lipschitz continuous and monotone operator within a real separable Hilbert space. Distinct from many existing inertial splitting approaches, this algorithm uniquely depends on one unbiased estimate of the monotone Lipschitz continuous operator and a single backward computation of the maximal monotone operator per iteration. We establish a convergence rate of
O
(
log
(
i
)
/
(
i
)
)
in expectation for a case of strong monotonicity, and almost sure convergence for a general monotone scenario. Furthermore, we examine its application to traffic flow networks. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-025-02779-1 |