Estimating charging demand from the perspective of choice behavior: A framework combining rule-based algorithm and hybrid choice model

It is of great significance to study the generation and spatio-temporal variation of electric vehicle charging demand for guiding the planning, construction and operation of charging facilities. Based on users' daily travel laws and behaviors, this paper proposed a framework for charging demand...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cleaner production Vol. 376; p. 134262
Main Authors: Zhang, Yiyuan, Luo, Xia, Wang, Zengrui, Mai, Qixin, Deng, Ruixin
Format: Journal Article
Language:English
Published: Elsevier Ltd 20.11.2022
Subjects:
ISSN:0959-6526, 1879-1786
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is of great significance to study the generation and spatio-temporal variation of electric vehicle charging demand for guiding the planning, construction and operation of charging facilities. Based on users' daily travel laws and behaviors, this paper proposed a framework for charging demand estimation, which combines rule-based algorithm and discrete choice model. The generation process of charging demand is divided into two choice stages. Stage one is before travel, where users choose whether to charge in the trip chain. Stage two is during travel, where users choose the charging location. The hybrid choice model based on the mixed logit model is constructed for the two choice stages respectively. This model can comprehensively consider the influence of several factors on charging choice behavior, including individual attitudes, preference heterogeneity, electric vehicle status, traffic attributes, parking place attributes and charging service level. In addition, the rule-based algorithm can establish the correlation within a trip chain, which refers to influence of the previous episode on the current episode. It can also update the status changes of battery electric vehicles and trips. In this way, the spatio-temporal coupling estimation of charging demand is achieved. Next, two stated preference surveys are conducted through online platform and field survey. The estimation results show that both probabilistic models have achieved high goodness-of-fit, and the proposed model can both characterize the influence of psychological attitude and preference heterogeneity of electric vehicle users on choice behavior. The parameter calibration results show that the user's travel plan plays a very important role in the process of generating charging demand. Besides, the attributes of the parking place and the service quality of the charging facilities are important factors affecting the choice of the charging location. The research results can guide the formulation of charging facility planning and operation strategies. •A charging demand estimation framework is proposed.•The method considers the psychological attitude and preference heterogeneity.•A two-stage revealed preference and stated preference survey is conducted.•The travel plan and BEV status play an important role in charging demand generation.•Recommendations on planning and operation of charging facilities are presented.
AbstractList It is of great significance to study the generation and spatio-temporal variation of electric vehicle charging demand for guiding the planning, construction and operation of charging facilities. Based on users' daily travel laws and behaviors, this paper proposed a framework for charging demand estimation, which combines rule-based algorithm and discrete choice model. The generation process of charging demand is divided into two choice stages. Stage one is before travel, where users choose whether to charge in the trip chain. Stage two is during travel, where users choose the charging location. The hybrid choice model based on the mixed logit model is constructed for the two choice stages respectively. This model can comprehensively consider the influence of several factors on charging choice behavior, including individual attitudes, preference heterogeneity, electric vehicle status, traffic attributes, parking place attributes and charging service level. In addition, the rule-based algorithm can establish the correlation within a trip chain, which refers to influence of the previous episode on the current episode. It can also update the status changes of battery electric vehicles and trips. In this way, the spatio-temporal coupling estimation of charging demand is achieved. Next, two stated preference surveys are conducted through online platform and field survey. The estimation results show that both probabilistic models have achieved high goodness-of-fit, and the proposed model can both characterize the influence of psychological attitude and preference heterogeneity of electric vehicle users on choice behavior. The parameter calibration results show that the user's travel plan plays a very important role in the process of generating charging demand. Besides, the attributes of the parking place and the service quality of the charging facilities are important factors affecting the choice of the charging location. The research results can guide the formulation of charging facility planning and operation strategies.
It is of great significance to study the generation and spatio-temporal variation of electric vehicle charging demand for guiding the planning, construction and operation of charging facilities. Based on users' daily travel laws and behaviors, this paper proposed a framework for charging demand estimation, which combines rule-based algorithm and discrete choice model. The generation process of charging demand is divided into two choice stages. Stage one is before travel, where users choose whether to charge in the trip chain. Stage two is during travel, where users choose the charging location. The hybrid choice model based on the mixed logit model is constructed for the two choice stages respectively. This model can comprehensively consider the influence of several factors on charging choice behavior, including individual attitudes, preference heterogeneity, electric vehicle status, traffic attributes, parking place attributes and charging service level. In addition, the rule-based algorithm can establish the correlation within a trip chain, which refers to influence of the previous episode on the current episode. It can also update the status changes of battery electric vehicles and trips. In this way, the spatio-temporal coupling estimation of charging demand is achieved. Next, two stated preference surveys are conducted through online platform and field survey. The estimation results show that both probabilistic models have achieved high goodness-of-fit, and the proposed model can both characterize the influence of psychological attitude and preference heterogeneity of electric vehicle users on choice behavior. The parameter calibration results show that the user's travel plan plays a very important role in the process of generating charging demand. Besides, the attributes of the parking place and the service quality of the charging facilities are important factors affecting the choice of the charging location. The research results can guide the formulation of charging facility planning and operation strategies. •A charging demand estimation framework is proposed.•The method considers the psychological attitude and preference heterogeneity.•A two-stage revealed preference and stated preference survey is conducted.•The travel plan and BEV status play an important role in charging demand generation.•Recommendations on planning and operation of charging facilities are presented.
ArticleNumber 134262
Author Mai, Qixin
Deng, Ruixin
Wang, Zengrui
Zhang, Yiyuan
Luo, Xia
Author_xml – sequence: 1
  givenname: Yiyuan
  orcidid: 0000-0003-4700-5899
  surname: Zhang
  fullname: Zhang, Yiyuan
  email: zyy196124@gmail.com
– sequence: 2
  givenname: Xia
  orcidid: 0000-0001-7598-2203
  surname: Luo
  fullname: Luo, Xia
  email: xia.luo@263.net
– sequence: 3
  givenname: Zengrui
  orcidid: 0000-0003-0259-9320
  surname: Wang
  fullname: Wang, Zengrui
  email: wzr453828440@gmail.com
– sequence: 4
  givenname: Qixin
  surname: Mai
  fullname: Mai, Qixin
  email: 1097315982@qq.com
– sequence: 5
  givenname: Ruixin
  surname: Deng
  fullname: Deng, Ruixin
  email: 1454920721@qq.com
BookMark eNqFkc1u1DAURi1UJKaFR0Dykk0G20nsGBaoqgpUqsQG1pZ_ricekniwPVP1BXhuHE3ZdNOVr-XvO5bOvUQXS1wAofeUbCmh_ON-u7cTHFLcMsLYlrYd4-wV2tBByIaKgV-gDZG9bHjP-Bt0mfOeECqI6Dbo720uYdYlLDtsR5126-Bg1ovDPsUZlxHwAVI-gC3hBDj6movBAjYw6lOI6RO-rlE9w0NMv7GNswnLSknHCRqjMzisp11MoYwzXrnjo0nB_cfM0cH0Fr32esrw7um8Qr--3v68-d7c__h2d3N931gmWGmEIdJRxjvuJBhBB83Ad4Mh3HhOZSu4pl1frxL6Tms7GOml9W0P9d2Ab6_QhzO32vpzhFzUHLKFadILxGNW9ZeWtkRIUqOfz1GbYs4JvLKhVFFxKUmHSVGiVvtqr57sq9W-Otuv7f5Z-5Cq5_T4Yu_LuQfVwilAUtkGWCy4kOoGlIvhBcI_VEKnTQ
CitedBy_id crossref_primary_10_3390_app132312877
crossref_primary_10_1177_03611981231168855
crossref_primary_10_1016_j_jclepro_2025_144779
crossref_primary_10_1016_j_energy_2024_130844
crossref_primary_10_1016_j_apenergy_2025_126167
crossref_primary_10_3390_en17143413
crossref_primary_10_1016_j_scs_2025_106682
crossref_primary_10_1680_jtran_25_00013
crossref_primary_10_1177_03611981241248161
crossref_primary_10_3390_en17246240
crossref_primary_10_3390_w15091750
crossref_primary_10_1016_j_segan_2025_101791
crossref_primary_10_1080_19427867_2024_2366399
Cites_doi 10.1016/j.trc.2019.03.007
10.1016/j.jclepro.2020.124982
10.1109/TITS.2020.2979363
10.1016/j.tra.2018.03.003
10.1016/j.jclepro.2020.120764
10.3141/2572-07
10.1016/j.trd.2017.08.021
10.1016/S0191-2615(02)00046-2
10.1023/A:1020254301302
10.1016/j.trc.2015.09.008
10.1016/j.jclepro.2019.118457
10.1016/j.trb.2017.03.004
10.1049/iet-gtd.2015.0995
10.1007/s11116-013-9504-3
10.1016/j.trc.2017.06.022
10.1287/trsc.2013.0487
10.1007/s11116-004-7962-3
10.3141/2239-04
10.1016/j.trc.2017.05.006
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2022.134262
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2022_134262
S0959652622038343
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c272t-7b09d12646d9eb718a2ef48b06bf619376a145b069e54aac8b9f9cf35ebf6bef3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867564200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Wed Oct 01 12:46:48 EDT 2025
Sat Nov 29 07:06:58 EST 2025
Tue Nov 18 21:06:35 EST 2025
Fri Feb 23 02:39:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Trip chain
Latent variable
Individual heterogeneity
Hybrid choice model
Battery electric vehicle
Charging demand estimation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c272t-7b09d12646d9eb718a2ef48b06bf619376a145b069e54aac8b9f9cf35ebf6bef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7598-2203
0000-0003-4700-5899
0000-0003-0259-9320
PQID 2723130790
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2723130790
crossref_citationtrail_10_1016_j_jclepro_2022_134262
crossref_primary_10_1016_j_jclepro_2022_134262
elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_134262
PublicationCentury 2000
PublicationDate 2022-11-20
PublicationDateYYYYMMDD 2022-11-20
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-20
  day: 20
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Soto, Márquez, Macea (bib21) 2018; 111
Paulssen, Temme, Vij, Walker (bib19) 2014; 41
Daina (bib4) 2014
Xu, Meng, Liu, Yamamoto (bib26) 2017; 103
Ma, Li, Wang, Wang, Hong (bib15) 2017; 32
Shun, Kunyu, Xiangning, Jianfeng, Yang, Jian (bib20) 2016; 10
Glerum, Stankovikj, Thémans, Bierlaire (bib8) 2014; 48
(bib17) 2020
Hensher, Rose, Greene (bib10) 2015
Ben-Akiva, McFadden, Train, Walker, Bhat, Bierlaire, Bolduc, Boersch-Supan, Brownstone, Bunch, Daly, de Palma, Gopinath, Karlstrom, Munizaga (bib1) 2002; 13
Ying (bib29) 2017
Yu, MacKenzie (bib30) 2016; 2572
Zhang, Luo, Qiu, Fu (bib31) 2022; 158
Zoepf (bib32) 2015
Luo, Zhang, Wang, Zhang (bib14) 2020; 34
Daina, Sivakumar, Polak (bib5) 2017; 81
Jin, Yao, An (bib11) 2020; 258
Kim, Yang, Rasouli, Timmermans (bib12) 2017; 82
Wan, Zhang, Jin, Ran, Wang, Chen (bib24) 2011
Fazeli, Venkatachalam, Chinnam, Murat (bib6) 2021; 22
Chen, Zhang, Figueiredo (bib3) 2019; 12
Tang (bib22) 2015
Li (bib13) 2018
Bierlaire (bib2) 2016
Ge, MacKenzie, Keith (bib7) 2018; 64
Miller, Roorda, Carrasco (bib16) 2005; 32
Walz, Contreras, Rudion (bib23) 2020
Yi, Zhang, Lin, Liu (bib28) 2020; 242
Greene, Hensher (bib9) 2003; 37
Pan, Yao, MacKenzie (bib18) 2019; 102
Wang, Yao, Pan (bib25) 2021; 286
Yang, Yao, Yang, Zhang (bib27) 2016; 65
Wan (10.1016/j.jclepro.2022.134262_bib24) 2011
Jin (10.1016/j.jclepro.2022.134262_bib11) 2020; 258
Wang (10.1016/j.jclepro.2022.134262_bib25) 2021; 286
Xu (10.1016/j.jclepro.2022.134262_bib26) 2017; 103
Zhang (10.1016/j.jclepro.2022.134262_bib31) 2022; 158
Luo (10.1016/j.jclepro.2022.134262_bib14) 2020; 34
Daina (10.1016/j.jclepro.2022.134262_bib5) 2017; 81
Hensher (10.1016/j.jclepro.2022.134262_bib10) 2015
Yu (10.1016/j.jclepro.2022.134262_bib30) 2016; 2572
Glerum (10.1016/j.jclepro.2022.134262_bib8) 2014; 48
Ying (10.1016/j.jclepro.2022.134262_bib29) 2017
Kim (10.1016/j.jclepro.2022.134262_bib12) 2017; 82
Pan (10.1016/j.jclepro.2022.134262_bib18) 2019; 102
Bierlaire (10.1016/j.jclepro.2022.134262_bib2) 2016
Soto (10.1016/j.jclepro.2022.134262_bib21) 2018; 111
Chen (10.1016/j.jclepro.2022.134262_bib3) 2019; 12
Greene (10.1016/j.jclepro.2022.134262_bib9) 2003; 37
(10.1016/j.jclepro.2022.134262_bib17) 2020
Yi (10.1016/j.jclepro.2022.134262_bib28) 2020; 242
Ge (10.1016/j.jclepro.2022.134262_bib7) 2018; 64
Li (10.1016/j.jclepro.2022.134262_bib13) 2018
Zoepf (10.1016/j.jclepro.2022.134262_bib32) 2015
Tang (10.1016/j.jclepro.2022.134262_bib22) 2015
Daina (10.1016/j.jclepro.2022.134262_bib4) 2014
Paulssen (10.1016/j.jclepro.2022.134262_bib19) 2014; 41
Walz (10.1016/j.jclepro.2022.134262_bib23) 2020
Shun (10.1016/j.jclepro.2022.134262_bib20) 2016; 10
Ma (10.1016/j.jclepro.2022.134262_bib15) 2017; 32
Yang (10.1016/j.jclepro.2022.134262_bib27) 2016; 65
Fazeli (10.1016/j.jclepro.2022.134262_bib6) 2021; 22
Miller (10.1016/j.jclepro.2022.134262_bib16) 2005; 32
Ben-Akiva (10.1016/j.jclepro.2022.134262_bib1) 2002; 13
References_xml – volume: 12
  year: 2019
  ident: bib3
  article-title: Spatio-temporal model for evaluating demand response potential of electric vehicles in power-traffic network
  publication-title: Energies
– volume: 37
  start-page: 681
  year: 2003
  end-page: 698
  ident: bib9
  article-title: A latent class model for discrete choice analysis: contrasts with mixed logit
  publication-title: Transp. Res. Part B Methodol.
– year: 2020
  ident: bib17
  article-title: Annual Report on the Development of Charging Infrastructure in China from 2019 to 2020
– year: 2015
  ident: bib22
  article-title: Choice Behavior under the Impact of Multivariate Traveler Information
– volume: 286
  year: 2021
  ident: bib25
  article-title: Electric vehicle drivers' charging behavior analysis considering heterogeneity and satisfaction
  publication-title: J. Clean. Prod.
– volume: 32
  start-page: 399
  year: 2005
  end-page: 422
  ident: bib16
  article-title: A tour-based model of travel mode choice
  publication-title: Transportation
– volume: 111
  start-page: 65
  year: 2018
  end-page: 77
  ident: bib21
  article-title: Accounting for attitudes on parking choice: an integrated choice and latent variable approach
  publication-title: Transport. Res. Part A Policy Pract.
– volume: 22
  start-page: 3038
  year: 2021
  end-page: 3053
  ident: bib6
  article-title: Two-stage stochastic choice modeling approach for electric vehicle charging station network design in urban communities
  publication-title: IEEE Trans. Intell. Transport. Syst.
– year: 2015
  ident: bib10
  article-title: Applied Choice Analysis, Applied Choice Analysis
– volume: 82
  start-page: 248
  year: 2017
  end-page: 260
  ident: bib12
  article-title: Heterogeneous hazard model of PEV users charging intervals: analysis of four year charging transactions data
  publication-title: Transport. Res. C Emerg. Technol.
– start-page: 459
  year: 2020
  end-page: 463
  ident: bib23
  article-title: Modelling of Workplace Electric Vehicle Charging Profiles Based on Trip Chain Generation
– volume: 102
  start-page: 60
  year: 2019
  end-page: 72
  ident: bib18
  article-title: Modeling EV charging choice considering risk attitudes and attribute non-attendance
  publication-title: Transport. Res. C Emerg. Technol.
– volume: 2572
  start-page: 56
  year: 2016
  end-page: 65
  ident: bib30
  article-title: Modeling charging choices of small-battery plug-in hybrid electric vehicle drivers by using instrumented vehicle data
  publication-title: Transport. Res. Rec.
– volume: 65
  start-page: 190
  year: 2016
  end-page: 204
  ident: bib27
  article-title: Modeling the charging and route choice behavior of BEV drivers
  publication-title: Transport. Res. C Emerg. Technol.
– year: 2018
  ident: bib13
  article-title: Research on the Layout of Urban Charging Station on Electric Vehicle Trip Chain
– volume: 242
  year: 2020
  ident: bib28
  article-title: Research on the spatial-temporal distribution of electric vehicle charging load demand : a case study in China
  publication-title: J. Clean. Prod.
– year: 2015
  ident: bib32
  article-title: Plug-in Vehicles and Carsharing: User Preferences, Energy Consumption and Potential for Growth 1–216
– volume: 103
  start-page: 68
  year: 2017
  end-page: 86
  ident: bib26
  article-title: Joint charging mode and location choice model for battery electric vehicle users
  publication-title: Transp. Res. Part B Methodol.
– volume: 64
  start-page: 111
  year: 2018
  end-page: 121
  ident: bib7
  article-title: Gas anxiety and the charging choices of plug-in hybrid electric vehicle drivers
  publication-title: Transport. Res. Transport Environ.
– year: 2016
  ident: bib2
  article-title: Estimating Choice Models with Latent Variables with PythonBiogeme 68
– volume: 81
  start-page: 36
  year: 2017
  end-page: 56
  ident: bib5
  article-title: Electric vehicle charging choices: modelling and implications for smart charging services
  publication-title: Transport. Res. C Emerg. Technol.
– volume: 10
  start-page: 2689
  year: 2016
  end-page: 2698
  ident: bib20
  article-title: Charging demand for electric vehicle based on stochastic analysis of trip chain
  publication-title: IET Gener., Transm. Distrib.
– volume: 41
  start-page: 873
  year: 2014
  end-page: 888
  ident: bib19
  article-title: Values, attitudes and travel behavior: a hierarchical latent variable mixed logit model of travel mode choice
  publication-title: Transportation
– volume: 34
  start-page: 1
  year: 2020
  end-page: 8
  ident: bib14
  article-title: An electric vehicle charging demand forecast model based on trip chain data
  publication-title: J. Chongqing Univ. Technol. Nat. Sci.
– year: 2017
  ident: bib29
  article-title: Research on Demand of Charging Piles Based on Stochastic Simulation of EV Trip Chain
– volume: 13
  start-page: 163
  year: 2002
  end-page: 175
  ident: bib1
  article-title: Hybrid choice models : progress and challenges Massachusetts institute of Technology
  publication-title: Market. Lett.
– volume: 48
  start-page: 483
  year: 2014
  end-page: 499
  ident: bib8
  article-title: Forecasting the demand for electric vehicles: accounting for attitudes and perceptions
  publication-title: Transport. Sci.
– volume: 258
  year: 2020
  ident: bib11
  article-title: Understanding customers ’ battery electric vehicle sharing adoption based on hybrid choice model
  publication-title: J. Clean. Prod.
– year: 2014
  ident: bib4
  article-title: Modelling Electric Vehicle Use and Charging Behaviour
– start-page: 23
  year: 2011
  end-page: 33
  ident: bib24
  article-title: Same-day mode choice modeling with household vehicle usage simulation in developing countries
  publication-title: Transport. Res. Rec.
– volume: 158
  start-page: 110
  year: 2022
  end-page: 126
  ident: bib31
  article-title: Understanding the generation mechanism of BEV drivers' charging demand : an exploration of the relationship between charging choice and complexity of trip chaining patterns
  publication-title: Transport. Res. Part A
– volume: 32
  start-page: 190
  year: 2017
  end-page: 202
  ident: bib15
  article-title: Research on demand of charging piles based on stochastic simulation of EV trip chain
  publication-title: Trans. China Electrotech. Soc.
– volume: 102
  start-page: 60
  year: 2019
  ident: 10.1016/j.jclepro.2022.134262_bib18
  article-title: Modeling EV charging choice considering risk attitudes and attribute non-attendance
  publication-title: Transport. Res. C Emerg. Technol.
  doi: 10.1016/j.trc.2019.03.007
– volume: 286
  year: 2021
  ident: 10.1016/j.jclepro.2022.134262_bib25
  article-title: Electric vehicle drivers' charging behavior analysis considering heterogeneity and satisfaction
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.124982
– volume: 22
  start-page: 3038
  year: 2021
  ident: 10.1016/j.jclepro.2022.134262_bib6
  article-title: Two-stage stochastic choice modeling approach for electric vehicle charging station network design in urban communities
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2020.2979363
– volume: 111
  start-page: 65
  year: 2018
  ident: 10.1016/j.jclepro.2022.134262_bib21
  article-title: Accounting for attitudes on parking choice: an integrated choice and latent variable approach
  publication-title: Transport. Res. Part A Policy Pract.
  doi: 10.1016/j.tra.2018.03.003
– start-page: 459
  year: 2020
  ident: 10.1016/j.jclepro.2022.134262_bib23
– volume: 258
  year: 2020
  ident: 10.1016/j.jclepro.2022.134262_bib11
  article-title: Understanding customers ’ battery electric vehicle sharing adoption based on hybrid choice model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120764
– volume: 158
  start-page: 110
  year: 2022
  ident: 10.1016/j.jclepro.2022.134262_bib31
  article-title: Understanding the generation mechanism of BEV drivers' charging demand : an exploration of the relationship between charging choice and complexity of trip chaining patterns
  publication-title: Transport. Res. Part A
– year: 2014
  ident: 10.1016/j.jclepro.2022.134262_bib4
– year: 2015
  ident: 10.1016/j.jclepro.2022.134262_bib22
– volume: 12
  year: 2019
  ident: 10.1016/j.jclepro.2022.134262_bib3
  article-title: Spatio-temporal model for evaluating demand response potential of electric vehicles in power-traffic network
  publication-title: Energies
– year: 2020
  ident: 10.1016/j.jclepro.2022.134262_bib17
– volume: 2572
  start-page: 56
  year: 2016
  ident: 10.1016/j.jclepro.2022.134262_bib30
  article-title: Modeling charging choices of small-battery plug-in hybrid electric vehicle drivers by using instrumented vehicle data
  publication-title: Transport. Res. Rec.
  doi: 10.3141/2572-07
– year: 2015
  ident: 10.1016/j.jclepro.2022.134262_bib10
– year: 2016
  ident: 10.1016/j.jclepro.2022.134262_bib2
– volume: 64
  start-page: 111
  year: 2018
  ident: 10.1016/j.jclepro.2022.134262_bib7
  article-title: Gas anxiety and the charging choices of plug-in hybrid electric vehicle drivers
  publication-title: Transport. Res. Transport Environ.
  doi: 10.1016/j.trd.2017.08.021
– volume: 37
  start-page: 681
  year: 2003
  ident: 10.1016/j.jclepro.2022.134262_bib9
  article-title: A latent class model for discrete choice analysis: contrasts with mixed logit
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/S0191-2615(02)00046-2
– volume: 34
  start-page: 1
  year: 2020
  ident: 10.1016/j.jclepro.2022.134262_bib14
  article-title: An electric vehicle charging demand forecast model based on trip chain data
  publication-title: J. Chongqing Univ. Technol. Nat. Sci.
– volume: 32
  start-page: 190
  year: 2017
  ident: 10.1016/j.jclepro.2022.134262_bib15
  article-title: Research on demand of charging piles based on stochastic simulation of EV trip chain
  publication-title: Trans. China Electrotech. Soc.
– volume: 13
  start-page: 163
  year: 2002
  ident: 10.1016/j.jclepro.2022.134262_bib1
  article-title: Hybrid choice models : progress and challenges Massachusetts institute of Technology
  publication-title: Market. Lett.
  doi: 10.1023/A:1020254301302
– year: 2017
  ident: 10.1016/j.jclepro.2022.134262_bib29
– volume: 65
  start-page: 190
  year: 2016
  ident: 10.1016/j.jclepro.2022.134262_bib27
  article-title: Modeling the charging and route choice behavior of BEV drivers
  publication-title: Transport. Res. C Emerg. Technol.
  doi: 10.1016/j.trc.2015.09.008
– volume: 242
  year: 2020
  ident: 10.1016/j.jclepro.2022.134262_bib28
  article-title: Research on the spatial-temporal distribution of electric vehicle charging load demand : a case study in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118457
– volume: 103
  start-page: 68
  year: 2017
  ident: 10.1016/j.jclepro.2022.134262_bib26
  article-title: Joint charging mode and location choice model for battery electric vehicle users
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2017.03.004
– volume: 10
  start-page: 2689
  year: 2016
  ident: 10.1016/j.jclepro.2022.134262_bib20
  article-title: Charging demand for electric vehicle based on stochastic analysis of trip chain
  publication-title: IET Gener., Transm. Distrib.
  doi: 10.1049/iet-gtd.2015.0995
– year: 2018
  ident: 10.1016/j.jclepro.2022.134262_bib13
– volume: 41
  start-page: 873
  year: 2014
  ident: 10.1016/j.jclepro.2022.134262_bib19
  article-title: Values, attitudes and travel behavior: a hierarchical latent variable mixed logit model of travel mode choice
  publication-title: Transportation
  doi: 10.1007/s11116-013-9504-3
– volume: 82
  start-page: 248
  year: 2017
  ident: 10.1016/j.jclepro.2022.134262_bib12
  article-title: Heterogeneous hazard model of PEV users charging intervals: analysis of four year charging transactions data
  publication-title: Transport. Res. C Emerg. Technol.
  doi: 10.1016/j.trc.2017.06.022
– year: 2015
  ident: 10.1016/j.jclepro.2022.134262_bib32
– volume: 48
  start-page: 483
  year: 2014
  ident: 10.1016/j.jclepro.2022.134262_bib8
  article-title: Forecasting the demand for electric vehicles: accounting for attitudes and perceptions
  publication-title: Transport. Sci.
  doi: 10.1287/trsc.2013.0487
– volume: 32
  start-page: 399
  year: 2005
  ident: 10.1016/j.jclepro.2022.134262_bib16
  article-title: A tour-based model of travel mode choice
  publication-title: Transportation
  doi: 10.1007/s11116-004-7962-3
– start-page: 23
  year: 2011
  ident: 10.1016/j.jclepro.2022.134262_bib24
  article-title: Same-day mode choice modeling with household vehicle usage simulation in developing countries
  publication-title: Transport. Res. Rec.
  doi: 10.3141/2239-04
– volume: 81
  start-page: 36
  year: 2017
  ident: 10.1016/j.jclepro.2022.134262_bib5
  article-title: Electric vehicle charging choices: modelling and implications for smart charging services
  publication-title: Transport. Res. C Emerg. Technol.
  doi: 10.1016/j.trc.2017.05.006
SSID ssj0017074
Score 2.455404
Snippet It is of great significance to study the generation and spatio-temporal variation of electric vehicle charging demand for guiding the planning, construction...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134262
SubjectTerms algorithms
batteries
Battery electric vehicle
Charging demand estimation
electric vehicles
Hybrid choice model
Individual heterogeneity
Latent variable
logit analysis
surveys
traffic
travel
Trip chain
Title Estimating charging demand from the perspective of choice behavior: A framework combining rule-based algorithm and hybrid choice model
URI https://dx.doi.org/10.1016/j.jclepro.2022.134262
https://www.proquest.com/docview/2723130790
Volume 376
WOSCitedRecordID wos000867564200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZKxwVcTPyKMUBG4m5ySeykjrmrUBFwMYEYUuEmihNnTVXSKmum7gV4Ch6W49iOK8Y0QOImSpPGTvJ9Pj4-OT8IvcjyUCkQ-4SKUJAokZIImPdIrAKdjSpJlCy6YhP8-DiZzcSHweCHi4U5X_K6TrZbsf6vUMMxAFuHzv4F3H2jcAD2AXTYAuyw_SPgpzBotRqqg2l1GiS9U6hv2kDex5KsfYhl51c-X4G86EP2TbR66dy2tNu57OpIHDXtUhE98RVH2fJ01VSbuSmxMb_QkV-uoa68zhVqL9xtVqtGO4YVJnPtJdv1l-qi3XEVajtr7qzyE4j931dVnzZt5Y3qnWfCx2prs4lbYwasg8OQ0MBb2FyUjXdpcqbKcUxtymwjqBMuSMhtGm0ryZkpJXNpVjAGisVoAY8ITzfSPY9CppPx-2mwd078pPvT3VEawPo9YjfQHuWxSIZob_JuOnvff6Xigcny7e7PR4i9_G1nV-k-v2gBnWpzcgftW3DwxHDpLhqo-h66vZOp8j767lmFHauwYRXWrMLAKrzDKrwqsSEDdqx6hSe45xTuOYU9p3DPKazbNZxyzXSceoA-v5mevH5LbAkPklNON4TLQBQhKN3jQigJelBGVQkSIRjLEpbuAFgWRjH8FCqOsixPpChFXrJYwXmpSvYQDetVrR4hnHEmx6DclioqooKWGehenEpRMMo4Z_QARe7lprnNb6_LrCxT58i4SC0mqcYkNZgcoFF_2dokeLnugsQhl1ot1WifKdDtukufO6RTkOL60xyMuFV7lsLLYqBNchE8_vfmD9EtP6aeoOGmadVTdDM_31RnzTNL3p8RFsrr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+charging+demand+from+the+perspective+of+choice+behavior%3A+A+framework+combining+rule-based+algorithm+and+hybrid+choice+model&rft.jtitle=Journal+of+cleaner+production&rft.au=Zhang%2C+Yiyuan&rft.au=Luo%2C+Xia&rft.au=Wang%2C+Zengrui&rft.au=Mai%2C+Qixin&rft.date=2022-11-20&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=376&rft_id=info:doi/10.1016%2Fj.jclepro.2022.134262&rft.externalDocID=S0959652622038343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon