On sequential greedy-type bases On sequential greedy-type bases

It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from projections onto intervals or in other words, consecutive terms of N . In this paper, we fix a sequence ( a n ) n = 1 ∞ and compare the TGA aga...

Full description

Saved in:
Bibliographic Details
Published in:Annals of functional analysis Vol. 16; no. 3; p. 36
Main Authors: Berasategui, Miguel, Berná, Pablo M., Chu, Hùng Việt
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.07.2025
Nature Publishing Group
Subjects:
ISSN:2639-7390, 2008-8752, 2008-8752
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from projections onto intervals or in other words, consecutive terms of N . In this paper, we fix a sequence ( a n ) n = 1 ∞ and compare the TGA against projections onto consecutive terms of the sequence and its shifts. We call the corresponding greedy-type condition the F ( a n ) -almost greedy property. Our first result shows that the F ( a n ) -almost greedy property is equivalent to the classical almost greedy property if and only if ( a n ) n = 1 ∞ is bounded. Then we establish an analog of the result for the strong partially greedy property. Finally, we show that under a certain projection rule and conditions on the sequence ( a n ) n = 1 ∞ , we obtain a greedy-type condition that lies strictly between the almost greedy and strong partially greedy properties.
AbstractList It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from projections onto intervals or in other words, consecutive terms of N . In this paper, we fix a sequence ( a n ) n = 1 ∞ and compare the TGA against projections onto consecutive terms of the sequence and its shifts. We call the corresponding greedy-type condition the F ( a n ) -almost greedy property. Our first result shows that the F ( a n ) -almost greedy property is equivalent to the classical almost greedy property if and only if ( a n ) n = 1 ∞ is bounded. Then we establish an analog of the result for the strong partially greedy property. Finally, we show that under a certain projection rule and conditions on the sequence ( a n ) n = 1 ∞ , we obtain a greedy-type condition that lies strictly between the almost greedy and strong partially greedy properties.
It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from projections onto intervals or in other words, consecutive terms of N. In this paper, we fix a sequence (an)n=1∞ and compare the TGA against projections onto consecutive terms of the sequence and its shifts. We call the corresponding greedy-type condition the F(an)-almost greedy property. Our first result shows that the F(an)-almost greedy property is equivalent to the classical almost greedy property if and only if (an)n=1∞ is bounded. Then we establish an analog of the result for the strong partially greedy property. Finally, we show that under a certain projection rule and conditions on the sequence (an)n=1∞, we obtain a greedy-type condition that lies strictly between the almost greedy and strong partially greedy properties.
ArticleNumber 36
Author Berasategui, Miguel
Chu, Hùng Việt
Berná, Pablo M.
Author_xml – sequence: 1
  givenname: Miguel
  surname: Berasategui
  fullname: Berasategui, Miguel
  organization: IMAS-UBA-CONICET-Pab I, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
– sequence: 2
  givenname: Pablo M.
  orcidid: 0000-0001-7685-0886
  surname: Berná
  fullname: Berná, Pablo M.
  email: pablo.berna@cunef.edu
  organization: Departamento de Matemáticas, CUNEF Universidad
– sequence: 3
  givenname: Hùng Việt
  surname: Chu
  fullname: Chu, Hùng Việt
  organization: Department of Mathematics, Texas A&M University
BookMark eNp9kD9PwzAQxS1UJErpF2ChErPh7LPjZEQV_6RKXWC2HOdctSpJsNMh3x5DkNi45W54793T75LN2q4lxq4F3AkAc58UAioOUnMAhZrjGZtLgJKXRstZvgusuMEKLtgypQPkUZWWhZqzm227SvR5onbYu-NqF4makQ9jT6vaJUpX7Dy4Y6Ll716w96fHt_UL32yfX9cPG-6lkQM3ZVkTOZCVE41y2BRlCEr4xnmDSM64plI1gQhCaye8koHA19ITBa-UwQW7nXL72OU2abCH7hTb_NKi1BUUhVAyq-Sk8rFLKVKwfdx_uDhaAfabhZ1Y2MzC_rCwmE04mVIWtzuKf9H_uL4AB9hiQw
Cites_doi 10.1017/CBO9780511762291
10.4064/sm200402-20-8
10.1016/j.jmaa.2024.128570
10.1016/j.jat.2019.105300
10.4064/sm159-1-4
10.1016/j.jat.2015.08.006
10.1007/s40687-024-00475-6
10.4153/S0008414X23000378
10.1016/j.jmaa.2018.09.065
10.1007/s00041-023-09997-z
10.1007/s10476-024-00008-x
10.1007/s00365-002-0525-y
10.1007/s00365-021-09531-8
10.1016/j.jfa.2023.110060
10.1016/j.jfa.2024.110594
10.1007/s13163-016-0204-3
10.1007/978-3-319-31557-7
10.1007/s40840-023-01472-8
10.1017/S0962492906380014
ContentType Journal Article
Copyright Tusi Mathematical Research Group (TMRG) 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Tusi Mathematical Research Group (TMRG) 2025.
Copyright_xml – notice: Tusi Mathematical Research Group (TMRG) 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Tusi Mathematical Research Group (TMRG) 2025.
DBID AAYXX
CITATION
DOI 10.1007/s43034-025-00435-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2008-8752
ExternalDocumentID 10_1007_s43034_025_00435_3
GrantInformation_xml – fundername: CONICET
  grantid: CONICETPIP 11220200101609CO
– fundername: Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación
  grantid: PICT 2018-04104
  funderid: http://dx.doi.org/10.13039/501100021778
– fundername: Agencia Estatal de Investigación
  grantid: PID2022-1422ONB-I00
  funderid: http://dx.doi.org/10.13039/501100011033
GroupedDBID -~9
0R~
406
8UJ
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABJNI
ABMQK
ABRTQ
ABTEG
ABTKH
ACAOD
ACDTI
ACGFO
ACHSB
ACOKC
ACPIV
ACSTC
ACZOJ
ADKNI
ADYFF
AEEGL
AEFQL
AEGXH
AEMSY
AENEX
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGMZJ
AGQEE
AHPBZ
AHWEU
AIAGR
AIGIU
AILAN
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ATHPR
AYFIA
BGNMA
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
IAO
IKXTQ
IWAJR
J9A
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
PUASD
RBF
RNS
ROL
RPE
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AAOJF
AAYXX
AFFOW
CITATION
ITC
LO0
RBV
ID FETCH-LOGICAL-c272t-788beea029a1d4a3d68ff41cdac733ea7ad94be01f155a1c42fe0cb2ceefc4473
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494875500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2639-7390
2008-8752
IngestDate Sat Nov 15 15:52:11 EST 2025
Sat Nov 29 07:32:41 EST 2025
Sat Jul 26 01:16:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 46B15
Thresholding greedy algorithm
Consecutive almost greediness
46B25
Bases
41A65
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-788beea029a1d4a3d68ff41cdac733ea7ad94be01f155a1c42fe0cb2ceefc4473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7685-0886
PQID 3259066142
PQPubID 7439463
ParticipantIDs proquest_journals_3259066142
crossref_primary_10_1007_s43034_025_00435_3
springer_journals_10_1007_s43034_025_00435_3
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Durham
PublicationTitle Annals of functional analysis
PublicationTitleAbbrev Ann. Funct. Anal
PublicationYear 2025
Publisher Springer International Publishing
Nature Publishing Group
Publisher_xml – name: Springer International Publishing
– name: Nature Publishing Group
References F Albiac (435_CR4) 2024; 287
M Berasategui (435_CR9) 2024; 11
M Berasategui (435_CR11) 2023; 29
P Berná (435_CR14) 2019; 248
HV Chu (435_CR15) 2024; 539
HV Chu (435_CR16) 2024; 50
F Albiac (435_CR3) 2023; 285
PM Berná (435_CR12) 2019; 470
F Albiac (435_CR1) 2016; 201
VN Temlyakov (435_CR21) 2011
F Albiac (435_CR5) 2021; 560
PM Berná (435_CR13) 2021; 259
VN Temlyakov (435_CR20) 2008; 17
SJ Dilworth (435_CR18) 2003; 19
M Berasategui (435_CR8) 2023; 46
F Albiac (435_CR2) 2017; 30
F Albiac (435_CR6) 2016
M Berasategui (435_CR10) 2021; 54
K Beanland (435_CR7) 2023; 76
SJ Dilworth (435_CR17) 2003; 159
SV Konyagin (435_CR19) 1999; 3
References_xml – volume-title: Greedy Approximation
  year: 2011
  ident: 435_CR21
  doi: 10.1017/CBO9780511762291
– volume: 259
  start-page: 225
  year: 2021
  ident: 435_CR13
  publication-title: Stud. Math.
  doi: 10.4064/sm200402-20-8
– volume: 539
  issue: 2
  year: 2024
  ident: 435_CR15
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2024.128570
– volume: 248
  start-page: 1
  year: 2019
  ident: 435_CR14
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2019.105300
– volume: 159
  start-page: 67
  year: 2003
  ident: 435_CR17
  publication-title: Stud. Math.
  doi: 10.4064/sm159-1-4
– volume: 3
  start-page: 365
  year: 1999
  ident: 435_CR19
  publication-title: East J. Approx.
– volume: 201
  start-page: 7
  year: 2016
  ident: 435_CR1
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2015.08.006
– volume: 11
  start-page: 61
  year: 2024
  ident: 435_CR9
  publication-title: Res. Math. Sci.
  doi: 10.1007/s40687-024-00475-6
– volume: 560
  start-page: 1
  year: 2021
  ident: 435_CR5
  publication-title: Diss. Math.
– volume: 76
  start-page: 1379
  issue: 4
  year: 2023
  ident: 435_CR7
  publication-title: Can. J. Math.
  doi: 10.4153/S0008414X23000378
– volume: 470
  start-page: 218
  year: 2019
  ident: 435_CR12
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.09.065
– volume: 29
  start-page: 1
  year: 2023
  ident: 435_CR11
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-023-09997-z
– volume: 50
  start-page: 111
  issue: 1
  year: 2024
  ident: 435_CR16
  publication-title: Anal. Math.
  doi: 10.1007/s10476-024-00008-x
– volume: 19
  start-page: 575
  year: 2003
  ident: 435_CR18
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-002-0525-y
– volume: 54
  start-page: 507
  year: 2021
  ident: 435_CR10
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-021-09531-8
– volume: 285
  start-page: 1
  year: 2023
  ident: 435_CR3
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2023.110060
– volume: 287
  year: 2024
  ident: 435_CR4
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2024.110594
– volume: 30
  start-page: 13
  year: 2017
  ident: 435_CR2
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-016-0204-3
– volume-title: Topics in Banach Space Theory
  year: 2016
  ident: 435_CR6
  doi: 10.1007/978-3-319-31557-7
– volume: 46
  start-page: 1
  year: 2023
  ident: 435_CR8
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-023-01472-8
– volume: 17
  start-page: 235
  year: 2008
  ident: 435_CR20
  publication-title: Acta Numer.
  doi: 10.1017/S0962492906380014
SSID ssj0000495264
Score 2.311985
Snippet It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 36
SubjectTerms Approximation
Functional Analysis
Mathematics
Mathematics and Statistics
Original Paper
Subtitle On sequential greedy-type bases
Title On sequential greedy-type bases
URI https://link.springer.com/article/10.1007/s43034-025-00435-3
https://www.proquest.com/docview/3259066142
Volume 16
WOSCitedRecordID wos001494875500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2008-8752
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000495264
  issn: 2639-7390
  databaseCode: RSV
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDLbgYICBN-LggA5sEKl5lLQjQpwY4EC8dFuVpImEhAq6Hvx-nPRxAsEAc6uodmN_dmx_ATiShUWYY5T4DJmIhDOiCu6IYzox0mRa28CufyVHo3Q8zm6bobCq7XZvS5LBU3fDbgK9rSD--lVfvkoIn4cFhLvUm-Pd_VN3soIxb8ICbxRD-CUSs_pmWubnZb4i0izM_FYZDYAzXP3fp67BShNgRmf1jliHOVtuwPJ1x85abcLhTRnVLdRo3i8RZtzoaok_jI08qFVb8Di8eDi_JM1FCcQwyaa-I1Bbq2KWKVoIxYvT1DlBTaGM5NwqqYpMaBtTh9GDokYwZ2OjGQKkM0JIvg298rW0OxBRqmNPeYfAlgqlpabSxcwyahLudEb7cNwqK3-r-TDyjvk4iJ2j2HkQO-d9GLT6zBvbqHKOGVfswwLWh5NWf7PHv6-2-7fX92CJhV_ge2sH0JtO3u0-LJqP6XM1OQh75hNQ7bj-
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBt1itdg_eNLB5rOkeRSwV2ypapbeQZBMQZJVu9febpLtbFD3oOUvYmSTzzWRmvgCc8Mw4mCMY-QgZsYQSJDNqkSUq0VynSpnArt_nw2FnPE7vyqawoqp2r1KSwVLXzW7MWVuG_POrPn2VILoIS8whli_ku394qm9WnM-bkMAbRRz8Iu6i-rJb5udpviLS3M38lhkNgNPd-N-vbsJ66WBGF7MdsQULJt-GtUHNzlrsQPs2j2Yl1O54v0Qu4namFvnL2MiDWrELj92r0WUPlQ8lIE04mfqKQGWMjEkqccYkzc471jKsM6k5pUZymaVMmRhbpy2JNSPWxFoRB5BWM8bpHjTy19zsQ4Sxij3lnQO2DpOKK8xtTAzBOqFWpbgJp5WyxNuMD0PUzMdBbOHEFkFsQZvQqvQpyrNRCOoirti7BaQJZ5X-5sO_z3bwt8_bsNIbDfqifz28OYRVEpbD19m2oDGdvJsjWNYf0-dichz2zycHzbvi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQH3ojBYD1wg2jNo2Q9ImACMcYkHtqtStJEQkJlWgu_nyRrO0BwQJxTRbXz-OzY_gxwxFNtYY5g5DxkxCJKkEipQYbISHEVS6k9u36fDwbd0Sgefqri99nuVUhyWtPgWJqyojNOTacufGP25mXItWJ1oawI0XlYYK5pkPPX75_qVxZr_0bEc0gRC8WIWw-_rJz5eZqv6DQzOb9FST349Nb-_9vrsFoansHZdKdswJzONmHltmZtzbegfZcF09Rqe-xfAuuJ2ysYuUfawIFdvg2PvcuH8ytUNlBAinBSuExBqbUISSxwygRNT7vGMKxSoTilWnCRxkzqEBtrVQisGDE6VJJY4DSKMU53oJG9ZnoXAoxl6KjwLOB1mZBcYm5CoglWETUyxk04rhSXjKc8GUnNiOzFTqzYiRc7oU1oVbpNyjOTJ9R6YqEzF0gTTipdzoZ_n23vb5-3YWl40Uv614ObfVgmfjVc-m0LGsXkTR_AonovnvPJod9KH9cixMY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+sequential+greedy-type+bases&rft.jtitle=Annals+of+functional+analysis&rft.au=Berasategui%2C+Miguel&rft.au=Bern%C3%A1%2C+Pablo+M&rft.au=Chu%2C+H%C3%B9ng+Vi%E1%BB%87t&rft.date=2025-07-01&rft.pub=Nature+Publishing+Group&rft.issn=2008-8752&rft.volume=16&rft.issue=3&rft.spage=36&rft_id=info:doi/10.1007%2Fs43034-025-00435-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-7390&client=summon