On sequential greedy-type bases On sequential greedy-type bases
It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from projections onto intervals or in other words, consecutive terms of N . In this paper, we fix a sequence ( a n ) n = 1 ∞ and compare the TGA aga...
Saved in:
| Published in: | Annals of functional analysis Vol. 16; no. 3; p. 36 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.07.2025
Nature Publishing Group |
| Subjects: | |
| ISSN: | 2639-7390, 2008-8752, 2008-8752 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from projections onto intervals or in other words, consecutive terms of
N
.
In this paper, we fix a sequence
(
a
n
)
n
=
1
∞
and compare the TGA against projections onto consecutive terms of the sequence and its shifts. We call the corresponding greedy-type condition the
F
(
a
n
)
-almost greedy property. Our first result shows that the
F
(
a
n
)
-almost greedy property is equivalent to the classical almost greedy property if and only if
(
a
n
)
n
=
1
∞
is bounded. Then we establish an analog of the result for the strong partially greedy property. Finally, we show that under a certain projection rule and conditions on the sequence
(
a
n
)
n
=
1
∞
,
we obtain a greedy-type condition that lies strictly between the almost greedy and strong partially greedy properties. |
|---|---|
| AbstractList | It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from projections onto intervals or in other words, consecutive terms of
N
.
In this paper, we fix a sequence
(
a
n
)
n
=
1
∞
and compare the TGA against projections onto consecutive terms of the sequence and its shifts. We call the corresponding greedy-type condition the
F
(
a
n
)
-almost greedy property. Our first result shows that the
F
(
a
n
)
-almost greedy property is equivalent to the classical almost greedy property if and only if
(
a
n
)
n
=
1
∞
is bounded. Then we establish an analog of the result for the strong partially greedy property. Finally, we show that under a certain projection rule and conditions on the sequence
(
a
n
)
n
=
1
∞
,
we obtain a greedy-type condition that lies strictly between the almost greedy and strong partially greedy properties. It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from projections onto intervals or in other words, consecutive terms of N. In this paper, we fix a sequence (an)n=1∞ and compare the TGA against projections onto consecutive terms of the sequence and its shifts. We call the corresponding greedy-type condition the F(an)-almost greedy property. Our first result shows that the F(an)-almost greedy property is equivalent to the classical almost greedy property if and only if (an)n=1∞ is bounded. Then we establish an analog of the result for the strong partially greedy property. Finally, we show that under a certain projection rule and conditions on the sequence (an)n=1∞, we obtain a greedy-type condition that lies strictly between the almost greedy and strong partially greedy properties. |
| ArticleNumber | 36 |
| Author | Berasategui, Miguel Chu, Hùng Việt Berná, Pablo M. |
| Author_xml | – sequence: 1 givenname: Miguel surname: Berasategui fullname: Berasategui, Miguel organization: IMAS-UBA-CONICET-Pab I, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – sequence: 2 givenname: Pablo M. orcidid: 0000-0001-7685-0886 surname: Berná fullname: Berná, Pablo M. email: pablo.berna@cunef.edu organization: Departamento de Matemáticas, CUNEF Universidad – sequence: 3 givenname: Hùng Việt surname: Chu fullname: Chu, Hùng Việt organization: Department of Mathematics, Texas A&M University |
| BookMark | eNp9kD9PwzAQxS1UJErpF2ChErPh7LPjZEQV_6RKXWC2HOdctSpJsNMh3x5DkNi45W54793T75LN2q4lxq4F3AkAc58UAioOUnMAhZrjGZtLgJKXRstZvgusuMEKLtgypQPkUZWWhZqzm227SvR5onbYu-NqF4makQ9jT6vaJUpX7Dy4Y6Ll716w96fHt_UL32yfX9cPG-6lkQM3ZVkTOZCVE41y2BRlCEr4xnmDSM64plI1gQhCaye8koHA19ITBa-UwQW7nXL72OU2abCH7hTb_NKi1BUUhVAyq-Sk8rFLKVKwfdx_uDhaAfabhZ1Y2MzC_rCwmE04mVIWtzuKf9H_uL4AB9hiQw |
| Cites_doi | 10.1017/CBO9780511762291 10.4064/sm200402-20-8 10.1016/j.jmaa.2024.128570 10.1016/j.jat.2019.105300 10.4064/sm159-1-4 10.1016/j.jat.2015.08.006 10.1007/s40687-024-00475-6 10.4153/S0008414X23000378 10.1016/j.jmaa.2018.09.065 10.1007/s00041-023-09997-z 10.1007/s10476-024-00008-x 10.1007/s00365-002-0525-y 10.1007/s00365-021-09531-8 10.1016/j.jfa.2023.110060 10.1016/j.jfa.2024.110594 10.1007/s13163-016-0204-3 10.1007/978-3-319-31557-7 10.1007/s40840-023-01472-8 10.1017/S0962492906380014 |
| ContentType | Journal Article |
| Copyright | Tusi Mathematical Research Group (TMRG) 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Tusi Mathematical Research Group (TMRG) 2025. |
| Copyright_xml | – notice: Tusi Mathematical Research Group (TMRG) 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Tusi Mathematical Research Group (TMRG) 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s43034-025-00435-3 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2008-8752 |
| ExternalDocumentID | 10_1007_s43034_025_00435_3 |
| GrantInformation_xml | – fundername: CONICET grantid: CONICETPIP 11220200101609CO – fundername: Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación grantid: PICT 2018-04104 funderid: http://dx.doi.org/10.13039/501100021778 – fundername: Agencia Estatal de Investigación grantid: PID2022-1422ONB-I00 funderid: http://dx.doi.org/10.13039/501100011033 |
| GroupedDBID | -~9 0R~ 406 8UJ AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABECU ABFSG ABJNI ABMQK ABRTQ ABTEG ABTKH ACAOD ACDTI ACGFO ACHSB ACOKC ACPIV ACSTC ACZOJ ADKNI ADYFF AEEGL AEFQL AEGXH AEMSY AENEX AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGMZJ AGQEE AHPBZ AHWEU AIAGR AIGIU AILAN AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA BGNMA DPUIP EBLON EBS EJD FIGPU FNLPD IAO IKXTQ IWAJR J9A JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 OK1 PT4 PUASD RBF RNS ROL RPE RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AAOJF AAYXX AFFOW CITATION ITC LO0 RBV |
| ID | FETCH-LOGICAL-c272t-788beea029a1d4a3d68ff41cdac733ea7ad94be01f155a1c42fe0cb2ceefc4473 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494875500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2639-7390 2008-8752 |
| IngestDate | Sat Nov 15 15:52:11 EST 2025 Sat Nov 29 07:32:41 EST 2025 Sat Jul 26 01:16:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | 46B15 Thresholding greedy algorithm Consecutive almost greediness 46B25 Bases 41A65 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-788beea029a1d4a3d68ff41cdac733ea7ad94be01f155a1c42fe0cb2ceefc4473 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7685-0886 |
| PQID | 3259066142 |
| PQPubID | 7439463 |
| ParticipantIDs | proquest_journals_3259066142 crossref_primary_10_1007_s43034_025_00435_3 springer_journals_10_1007_s43034_025_00435_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Durham |
| PublicationTitle | Annals of functional analysis |
| PublicationTitleAbbrev | Ann. Funct. Anal |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Nature Publishing Group |
| Publisher_xml | – name: Springer International Publishing – name: Nature Publishing Group |
| References | F Albiac (435_CR4) 2024; 287 M Berasategui (435_CR9) 2024; 11 M Berasategui (435_CR11) 2023; 29 P Berná (435_CR14) 2019; 248 HV Chu (435_CR15) 2024; 539 HV Chu (435_CR16) 2024; 50 F Albiac (435_CR3) 2023; 285 PM Berná (435_CR12) 2019; 470 F Albiac (435_CR1) 2016; 201 VN Temlyakov (435_CR21) 2011 F Albiac (435_CR5) 2021; 560 PM Berná (435_CR13) 2021; 259 VN Temlyakov (435_CR20) 2008; 17 SJ Dilworth (435_CR18) 2003; 19 M Berasategui (435_CR8) 2023; 46 F Albiac (435_CR2) 2017; 30 F Albiac (435_CR6) 2016 M Berasategui (435_CR10) 2021; 54 K Beanland (435_CR7) 2023; 76 SJ Dilworth (435_CR17) 2003; 159 SV Konyagin (435_CR19) 1999; 3 |
| References_xml | – volume-title: Greedy Approximation year: 2011 ident: 435_CR21 doi: 10.1017/CBO9780511762291 – volume: 259 start-page: 225 year: 2021 ident: 435_CR13 publication-title: Stud. Math. doi: 10.4064/sm200402-20-8 – volume: 539 issue: 2 year: 2024 ident: 435_CR15 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2024.128570 – volume: 248 start-page: 1 year: 2019 ident: 435_CR14 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2019.105300 – volume: 159 start-page: 67 year: 2003 ident: 435_CR17 publication-title: Stud. Math. doi: 10.4064/sm159-1-4 – volume: 3 start-page: 365 year: 1999 ident: 435_CR19 publication-title: East J. Approx. – volume: 201 start-page: 7 year: 2016 ident: 435_CR1 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2015.08.006 – volume: 11 start-page: 61 year: 2024 ident: 435_CR9 publication-title: Res. Math. Sci. doi: 10.1007/s40687-024-00475-6 – volume: 560 start-page: 1 year: 2021 ident: 435_CR5 publication-title: Diss. Math. – volume: 76 start-page: 1379 issue: 4 year: 2023 ident: 435_CR7 publication-title: Can. J. Math. doi: 10.4153/S0008414X23000378 – volume: 470 start-page: 218 year: 2019 ident: 435_CR12 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2018.09.065 – volume: 29 start-page: 1 year: 2023 ident: 435_CR11 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-023-09997-z – volume: 50 start-page: 111 issue: 1 year: 2024 ident: 435_CR16 publication-title: Anal. Math. doi: 10.1007/s10476-024-00008-x – volume: 19 start-page: 575 year: 2003 ident: 435_CR18 publication-title: Constr. Approx. doi: 10.1007/s00365-002-0525-y – volume: 54 start-page: 507 year: 2021 ident: 435_CR10 publication-title: Constr. Approx. doi: 10.1007/s00365-021-09531-8 – volume: 285 start-page: 1 year: 2023 ident: 435_CR3 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2023.110060 – volume: 287 year: 2024 ident: 435_CR4 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2024.110594 – volume: 30 start-page: 13 year: 2017 ident: 435_CR2 publication-title: Rev. Mat. Complut. doi: 10.1007/s13163-016-0204-3 – volume-title: Topics in Banach Space Theory year: 2016 ident: 435_CR6 doi: 10.1007/978-3-319-31557-7 – volume: 46 start-page: 1 year: 2023 ident: 435_CR8 publication-title: Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-023-01472-8 – volume: 17 start-page: 235 year: 2008 ident: 435_CR20 publication-title: Acta Numer. doi: 10.1017/S0962492906380014 |
| SSID | ssj0000495264 |
| Score | 2.311985 |
| Snippet | It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 36 |
| SubjectTerms | Approximation Functional Analysis Mathematics Mathematics and Statistics Original Paper |
| Subtitle | On sequential greedy-type bases |
| Title | On sequential greedy-type bases |
| URI | https://link.springer.com/article/10.1007/s43034-025-00435-3 https://www.proquest.com/docview/3259066142 |
| Volume | 16 |
| WOSCitedRecordID | wos001494875500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2008-8752 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000495264 issn: 2639-7390 databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDLbgYICBN-LggA5sEKl5lLQjQpwY4EC8dFuVpImEhAq6Hvx-nPRxAsEAc6uodmN_dmx_ATiShUWYY5T4DJmIhDOiCu6IYzox0mRa28CufyVHo3Q8zm6bobCq7XZvS5LBU3fDbgK9rSD--lVfvkoIn4cFhLvUm-Pd_VN3soIxb8ICbxRD-CUSs_pmWubnZb4i0izM_FYZDYAzXP3fp67BShNgRmf1jliHOVtuwPJ1x85abcLhTRnVLdRo3i8RZtzoaok_jI08qFVb8Di8eDi_JM1FCcQwyaa-I1Bbq2KWKVoIxYvT1DlBTaGM5NwqqYpMaBtTh9GDokYwZ2OjGQKkM0JIvg298rW0OxBRqmNPeYfAlgqlpabSxcwyahLudEb7cNwqK3-r-TDyjvk4iJ2j2HkQO-d9GLT6zBvbqHKOGVfswwLWh5NWf7PHv6-2-7fX92CJhV_ge2sH0JtO3u0-LJqP6XM1OQh75hNQ7bj- |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBt1itdg_eNLB5rOkeRSwV2ypapbeQZBMQZJVu9febpLtbFD3oOUvYmSTzzWRmvgCc8Mw4mCMY-QgZsYQSJDNqkSUq0VynSpnArt_nw2FnPE7vyqawoqp2r1KSwVLXzW7MWVuG_POrPn2VILoIS8whli_ku394qm9WnM-bkMAbRRz8Iu6i-rJb5udpviLS3M38lhkNgNPd-N-vbsJ66WBGF7MdsQULJt-GtUHNzlrsQPs2j2Yl1O54v0Qu4namFvnL2MiDWrELj92r0WUPlQ8lIE04mfqKQGWMjEkqccYkzc471jKsM6k5pUZymaVMmRhbpy2JNSPWxFoRB5BWM8bpHjTy19zsQ4Sxij3lnQO2DpOKK8xtTAzBOqFWpbgJp5WyxNuMD0PUzMdBbOHEFkFsQZvQqvQpyrNRCOoirti7BaQJZ5X-5sO_z3bwt8_bsNIbDfqifz28OYRVEpbD19m2oDGdvJsjWNYf0-dichz2zycHzbvi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQH3ojBYD1wg2jNo2Q9ImACMcYkHtqtStJEQkJlWgu_nyRrO0BwQJxTRbXz-OzY_gxwxFNtYY5g5DxkxCJKkEipQYbISHEVS6k9u36fDwbd0Sgefqri99nuVUhyWtPgWJqyojNOTacufGP25mXItWJ1oawI0XlYYK5pkPPX75_qVxZr_0bEc0gRC8WIWw-_rJz5eZqv6DQzOb9FST349Nb-_9vrsFoansHZdKdswJzONmHltmZtzbegfZcF09Rqe-xfAuuJ2ysYuUfawIFdvg2PvcuH8ytUNlBAinBSuExBqbUISSxwygRNT7vGMKxSoTilWnCRxkzqEBtrVQisGDE6VJJY4DSKMU53oJG9ZnoXAoxl6KjwLOB1mZBcYm5CoglWETUyxk04rhSXjKc8GUnNiOzFTqzYiRc7oU1oVbpNyjOTJ9R6YqEzF0gTTipdzoZ_n23vb5-3YWl40Uv614ObfVgmfjVc-m0LGsXkTR_AonovnvPJod9KH9cixMY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+sequential+greedy-type+bases&rft.jtitle=Annals+of+functional+analysis&rft.au=Berasategui%2C+Miguel&rft.au=Bern%C3%A1%2C+Pablo+M&rft.au=Chu%2C+H%C3%B9ng+Vi%E1%BB%87t&rft.date=2025-07-01&rft.pub=Nature+Publishing+Group&rft.issn=2008-8752&rft.volume=16&rft.issue=3&rft.spage=36&rft_id=info:doi/10.1007%2Fs43034-025-00435-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-7390&client=summon |