Simultaneous inference and trend specification testing in ARMA model with trend via innovation distribution function

The innovation distribution function in the ARMA model with trend is estimated by the kernel distribution estimator (KDE). The KDE is shown to converge weakly to a Gaussian process with certain covariance structure, yielding a simultaneous confidence band (SCB) for the innovation distribution functi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistical papers (Berlin, Germany) Ročník 66; číslo 5; s. 120
Hlavní autor: Zhong, Chen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2025
Springer Nature B.V
Témata:
ISSN:0932-5026, 1613-9798
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The innovation distribution function in the ARMA model with trend is estimated by the kernel distribution estimator (KDE). The KDE is shown to converge weakly to a Gaussian process with certain covariance structure, yielding a simultaneous confidence band (SCB) for the innovation distribution function. Additionally, a goodness-of-fit test statistics for testing whether the trend function belongs to some parametric form is proposed through measuring the difference between the nonparametric and parametric residuals via the KDE of innovation distribution function. The asymptotic distribution of the test statistics under the null is developed and the asymptotic power against local alternatives is examined as well. Bootstrap methods are employed to implement the trend specification test and work well in the numerical studies. The proposed theory is illustrated by two data sets including spot price returns and global air temperature data.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0932-5026
1613-9798
DOI:10.1007/s00362-025-01743-5