In-Situ Loading Test in Deep Soft Soil and Back Analysis Based on Machine Learning Method

To investigate the effects of overlying surcharge on ground deformation in soft soil areas, in-situ loading tests are conducted to monitor soil behavior. Monitoring data, including surface settlement, lateral displacement, stratified settlement, and pore water pressure, are collected from 5th Januar...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of civil engineering (Tehran. Online) Ročník 23; číslo 8; s. 1701 - 1716
Hlavní autori: Liu, Zhicheng, Zhang, Wengang, Zhang, Xiaoguang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.08.2025
Springer Nature B.V
Predmet:
ISSN:1735-0522, 2383-3874
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To investigate the effects of overlying surcharge on ground deformation in soft soil areas, in-situ loading tests are conducted to monitor soil behavior. Monitoring data, including surface settlement, lateral displacement, stratified settlement, and pore water pressure, are collected from 5th January to 22nd February. The three-dimensional finite element model is established to analyze the loading test, and a Genetic Algorithm-Backpropagation Neural Network (GA-BPNN) model is employed for the back-analysis of soil parameters. The analysis of the monitoring data reveals that the cumulative settlement initially exhibits an uplift followed by settlement, while lateral displacement progressively decreases, with the influence range of the load extending to approximately 108 m. Sensitivity analysis identifies the internal friction angle φ and E ref oed of the 2-1A mud layer as the most significant parameters influencing horizontal displacement. The back analysis shows good agreement with the monitoring data, indicating that the model’s predictions align well with the observed results. The in-situ loading tests and back analysis results offer valuable insights into the deformation behavior of soils under surcharge loading and provide a robust framework for model calibration, ultimately contributing to the safety and stability of similar infrastructure projects.
AbstractList To investigate the effects of overlying surcharge on ground deformation in soft soil areas, in-situ loading tests are conducted to monitor soil behavior. Monitoring data, including surface settlement, lateral displacement, stratified settlement, and pore water pressure, are collected from 5th January to 22nd February. The three-dimensional finite element model is established to analyze the loading test, and a Genetic Algorithm-Backpropagation Neural Network (GA-BPNN) model is employed for the back-analysis of soil parameters. The analysis of the monitoring data reveals that the cumulative settlement initially exhibits an uplift followed by settlement, while lateral displacement progressively decreases, with the influence range of the load extending to approximately 108 m. Sensitivity analysis identifies the internal friction angle φ and Eref oed of the 2-1A mud layer as the most significant parameters influencing horizontal displacement. The back analysis shows good agreement with the monitoring data, indicating that the model’s predictions align well with the observed results. The in-situ loading tests and back analysis results offer valuable insights into the deformation behavior of soils under surcharge loading and provide a robust framework for model calibration, ultimately contributing to the safety and stability of similar infrastructure projects.
To investigate the effects of overlying surcharge on ground deformation in soft soil areas, in-situ loading tests are conducted to monitor soil behavior. Monitoring data, including surface settlement, lateral displacement, stratified settlement, and pore water pressure, are collected from 5th January to 22nd February. The three-dimensional finite element model is established to analyze the loading test, and a Genetic Algorithm-Backpropagation Neural Network (GA-BPNN) model is employed for the back-analysis of soil parameters. The analysis of the monitoring data reveals that the cumulative settlement initially exhibits an uplift followed by settlement, while lateral displacement progressively decreases, with the influence range of the load extending to approximately 108 m. Sensitivity analysis identifies the internal friction angle φ and E ref oed of the 2-1A mud layer as the most significant parameters influencing horizontal displacement. The back analysis shows good agreement with the monitoring data, indicating that the model’s predictions align well with the observed results. The in-situ loading tests and back analysis results offer valuable insights into the deformation behavior of soils under surcharge loading and provide a robust framework for model calibration, ultimately contributing to the safety and stability of similar infrastructure projects.
Author Zhang, Wengang
Zhang, Xiaoguang
Liu, Zhicheng
Author_xml – sequence: 1
  givenname: Zhicheng
  surname: Liu
  fullname: Liu, Zhicheng
  organization: School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Metro Group Co., Ltd
– sequence: 2
  givenname: Wengang
  surname: Zhang
  fullname: Zhang, Wengang
  email: zhangwg@cqu.edu.cn
  organization: School of Civil Engineering, Chongqing University, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University
– sequence: 3
  givenname: Xiaoguang
  surname: Zhang
  fullname: Zhang, Xiaoguang
  organization: Guangzhou Metro Group Co., Ltd
BookMark eNp9kEtPAjEUhRuDiYj8AVdNXFf7nE6XiC-SIS7AhaumTDswiC22w4J_b3FM3Lm5N_fmnJOT7xIMfPAOgGuCbwnG8i5xrJRCmAqECWEClWdgSFnJECslH4AhkfmJBaUXYJzSFmNMVcEYE0PwPvNo0XYHWAVjW7-GS5c62Hr44NweLkLT5dHuoPEW3pv6A0682R1Tm_KVnIXBw7mpN613sHIm-lPE3HWbYK_AeWN2yY1_9wi8PT0upy-oen2eTScVqqmkHSqso4IYWhsrrallw6yxXCqLDW14YbFy1q6UI8JyYgtjeMNos1pxJWlZE8VG4KbP3cfwdcjt9TYcYm6ZNKNCFJkDJ1lFe1UdQ0rRNXof208Tj5pgfaKoe4o6U9Q_FHWZTaw3pSz2axf_ov9xfQMS6nXU
Cites_doi 10.1080/17499518.2021.2010098
10.1016/s0886-7798(03)00087-7
10.1142/s021987622450066x
10.1016/s0951-8320(02)00231-4
10.1016/j.tust.2023.105199
10.1016/j.undsp.2023.05.013
10.3208/sandf.41.39
10.1061/(asce)1090-0241(2008)134:10(1531)
10.1016/j.tust.2015.10.044
10.3208/sandf.43.4_229
10.1016/j.enggeo.2014.03.008
10.1680/geot.53.7.679.37382
10.1139/cgj-2018-0892
10.1016/j.autcon.2024.105394
10.1016/j.tust.2023.105099
10.1080/17499518.2019.1641609
10.1680/geot.1977.27.2.203
10.1016/j.gr.2022.06.011
10.1007/s10462-021-09967-1
10.1016/j.tust.2019.103103
10.1016/0266-352x(96)00040-7
10.1016/j.istruc.2024.105865
10.1016/j.tust.2023.105506
ContentType Journal Article
Copyright The Author(s), under exclusive licence to the Iran University of Science and Technology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to the Iran University of Science and Technology 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to the Iran University of Science and Technology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to the Iran University of Science and Technology 2025.
DBID AAYXX
CITATION
DOI 10.1007/s40999-025-01135-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2383-3874
EndPage 1716
ExternalDocumentID 10_1007_s40999_025_01135_8
GrantInformation_xml – fundername: Guangzhou Metro Grp Co Ltd
  grantid: JT204-100111-23001
– fundername: Major Projects of the Chinese Academy of Engineering
  grantid: 2022-D,FZD-10
GroupedDBID 0R~
2XV
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYQN
AAYTO
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFZKB
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHKAY
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
BGNMA
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
IAO
IKXTQ
ISR
ITC
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABJCF
ABRTQ
AEUYN
AFFHD
AFKRA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c272t-6de251a2cad7dac7f3dad479d0a2f46d09eddb9e15d41d6aa4f32fbb49728c193
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514261200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1735-0522
IngestDate Thu Oct 02 16:35:07 EDT 2025
Sat Nov 29 07:44:46 EST 2025
Sun Jul 06 01:15:56 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords Soil deformation
Soft soil
Genetic algorithm-backpropagation neural network
Back analysis
In-site loading test
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-6de251a2cad7dac7f3dad479d0a2f46d09eddb9e15d41d6aa4f32fbb49728c193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255638341
PQPubID 7435105
PageCount 16
ParticipantIDs proquest_journals_3255638341
crossref_primary_10_1007_s40999_025_01135_8
springer_journals_10_1007_s40999_025_01135_8
PublicationCentury 2000
PublicationDate 20250800
2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle International journal of civil engineering (Tehran. Online)
PublicationTitleAbbrev Int J Civ Eng
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References D Hu (1135_CR18) 2024
FY Liang (1135_CR2) 2024; 14
WG Zhang (1135_CR19) 2021; 54
H Li (1135_CR23) 2023; 136
JH Atkinson (1135_CR4) 1977; 27
HW Huang (1135_CR1) 2016; 51
SY Bai (1135_CR9) 2023; 44
JS Huang (1135_CR20) 2019; 13
J Zhou (1135_CR26) 2024
JZ Zhang (1135_CR6) 2023; 140
S Rampello (1135_CR11) 2003; 43
FS Niazi (1135_CR14) 2020; 57
A Kurtulus (1135_CR16) 2008; 134
B Liu (1135_CR24) 2020
A Fakhimi (1135_CR15) 2004; 19
M Khoiri (1135_CR13) 2014; 174
H Nagaoka (1135_CR17) 2001; 41
PY Hicher (1135_CR7) 1996; 19
A Francos (1135_CR25) 2003; 79
LL Hou (1135_CR22) 2024; 162
G Wei (1135_CR3) 2024; 60
SH Jiang (1135_CR12) 2022; 16
TS Nagaraj (1135_CR8) 2003; 53
ZB Gao (1135_CR10) 2010; 32
CZ Wu (1135_CR21) 2023; 123
Z Ding (1135_CR5) 2024; 144
References_xml – volume: 16
  start-page: 746
  issue: 4
  year: 2022
  ident: 1135_CR12
  publication-title: Georisk
  doi: 10.1080/17499518.2021.2010098
– volume: 19
  start-page: 57
  issue: 1
  year: 2004
  ident: 1135_CR15
  publication-title: Tunn Undergr Sp Tech
  doi: 10.1016/s0886-7798(03)00087-7
– year: 2024
  ident: 1135_CR18
  publication-title: Int J Comput Methods
  doi: 10.1142/s021987622450066x
– volume: 79
  start-page: 205
  issue: 2
  year: 2003
  ident: 1135_CR25
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/s0951-8320(02)00231-4
– volume: 140
  year: 2023
  ident: 1135_CR6
  publication-title: Tunn Undergr Sp Tech
  doi: 10.1016/j.tust.2023.105199
– volume: 14
  start-page: 219
  year: 2024
  ident: 1135_CR2
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2023.05.013
– volume: 41
  start-page: 39
  issue: 1
  year: 2001
  ident: 1135_CR17
  publication-title: Soils Found
  doi: 10.3208/sandf.41.39
– volume: 134
  start-page: 1531
  issue: 10
  year: 2008
  ident: 1135_CR16
  publication-title: J Geotech Geoenviron
  doi: 10.1061/(asce)1090-0241(2008)134:10(1531)
– volume-title: Study on retaining structures for large deep exavations in deep soft soil under complex environment
  year: 2024
  ident: 1135_CR26
– volume: 51
  start-page: 301
  year: 2016
  ident: 1135_CR1
  publication-title: Tunn Undergr Sp Tech
  doi: 10.1016/j.tust.2015.10.044
– volume: 43
  start-page: 229
  issue: 4
  year: 2003
  ident: 1135_CR11
  publication-title: Soils Found
  doi: 10.3208/sandf.43.4_229
– volume: 174
  start-page: 61
  year: 2014
  ident: 1135_CR13
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2014.03.008
– volume: 53
  start-page: 679
  issue: 7
  year: 2003
  ident: 1135_CR8
  publication-title: Geotechnique
  doi: 10.1680/geot.53.7.679.37382
– volume: 57
  start-page: 851
  issue: 6
  year: 2020
  ident: 1135_CR14
  publication-title: Can Geotech J
  doi: 10.1139/cgj-2018-0892
– volume: 162
  year: 2024
  ident: 1135_CR22
  publication-title: Automat Constr
  doi: 10.1016/j.autcon.2024.105394
– volume: 136
  year: 2023
  ident: 1135_CR23
  publication-title: Tunn Undergr Sp Tech
  doi: 10.1016/j.tust.2023.105099
– volume: 13
  start-page: 320
  issue: 4
  year: 2019
  ident: 1135_CR20
  publication-title: Georisk
  doi: 10.1080/17499518.2019.1641609
– volume: 44
  start-page: 206
  issue: 1
  year: 2023
  ident: 1135_CR9
  publication-title: Rock Soil Mech
– volume: 32
  start-page: 731
  issue: 5
  year: 2010
  ident: 1135_CR10
  publication-title: Chin J Geotech Eng
– volume: 27
  start-page: 203
  issue: 2
  year: 1977
  ident: 1135_CR4
  publication-title: Geotechnique
  doi: 10.1680/geot.1977.27.2.203
– volume: 123
  start-page: 184
  year: 2023
  ident: 1135_CR21
  publication-title: Gondwana Res
  doi: 10.1016/j.gr.2022.06.011
– volume: 54
  start-page: 5633
  issue: 8
  year: 2021
  ident: 1135_CR19
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-09967-1
– year: 2020
  ident: 1135_CR24
  publication-title: Tunn Undergr Sp Tech
  doi: 10.1016/j.tust.2019.103103
– volume: 19
  start-page: 153
  issue: 2
  year: 1996
  ident: 1135_CR7
  publication-title: Comput Geotech
  doi: 10.1016/0266-352x(96)00040-7
– volume: 60
  year: 2024
  ident: 1135_CR3
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.105865
– volume: 144
  year: 2024
  ident: 1135_CR5
  publication-title: Tunn Undergr Sp Tech
  doi: 10.1016/j.tust.2023.105506
SSID ssj0002963335
ssib031263548
ssib045315334
Score 2.3260524
Snippet To investigate the effects of overlying surcharge on ground deformation in soft soil areas, in-situ loading tests are conducted to monitor soil behavior....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1701
SubjectTerms Civil Engineering
Engineering
Research Paper
Title In-Situ Loading Test in Deep Soft Soil and Back Analysis Based on Machine Learning Method
URI https://link.springer.com/article/10.1007/s40999-025-01135-8
https://www.proquest.com/docview/3255638341
Volume 23
WOSCitedRecordID wos001514261200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2383-3874
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002963335
  issn: 1735-0522
  databaseCode: RSV
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3E6JQdvGkjStEmPfg0FN8RN0VNJ8yFF6ca6-febZu2moge9FEpK2r78kvdr897vAXAslSVpSCIUpdgilnKDJOEKYSmUFSIWWEhfbIJ3u-LpKb6rksKKOtq93pL0K_Us2Y1hnzFPy2AzEoRILIIl5-5EOR3ve481igJS6qvMST5zKCvzTWd_XqjDXOArbxLuusGOgVTZND_f5qvHmtPQbzun3iG11__3KhtgrSKg8GyKmE2wYPItsPpJlnAbPN_kqJeNJ_B24CPsYd89CcxyeGnMEPbcwu0O2RuUuYbnUr3CWtnEnRVGw0EOOz5G08BKvvUFdnyl6h3w0L7qX1yjqgQDUpTTMYq0cQRIUiU111JxG2ipGY81ltSySOPYaJ3GhoSaER1JyWxAbZqymFOhHDncBY18kJs9AEMdKRpqwgwLmRRWYAceFgtjpEldYxOc1GZOhlOljWSmqewNljiDJd5giWiCVj0SSTXriiQo9dTcJzcjTXBaW37e_Htv-3-7_ACsUD94ZRxgCzTGo4k5BMvqfZwVoyOPxg953NVy
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xScCBHVFWH7iBpdhxYufIVrWirRAtqJwix3ZQBEorWvh-HJO0gOAAl0iRIycZv3jG8Zs3AMdSpSQJSIjDxEsxS7jBknCFPSlUKkQkPCFdsQne6Yh-P7opk8JGFdu92pJ0M_Uk2Y15LmOeFmQz4gdYzMI8sx6rIPLddu8rFPmk0FeZBvnMoqzIN538eaEWc76rvEm47cazEUiZTfPzbb56rGkY-m3n1Dmk-ur_XmUNVsoAFJ19IGYdZky-AcufZAk34aGZ4242fkWtgWPYo559EpTl6NKYIeraidsesmckc43OpXpClbKJPRsZjQY5ajuOpkGlfOsjartK1VtwV7_qXTRwWYIBK8rpGIfa2ABIUiU111Lx1NdSMx5pT9KUhdqLjNZJZEigGdGhlCz1aZokLOJUKBscbsNcPsjNDqBAh4oGmjDDAiZFKjwLHhYJY6RJbGMNTiozx8MPpY14oqnsDBZbg8XOYLGowX41EnH51Y1iv9BTs0tuRmpwWll-2vx7b7t_u_wIFhu9dituNTvXe7BE3UAWnMB9mBu_vJoDWFBv42z0cuiQ-Q6EE9hW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7PHLxpsEnTJj36WhR1EVZFTyXNQxalu-xWf79ptt1V0YN4KZSUtJ2ZNl-S-b4B2JfKkiwiMY6zwGKWcYMl4QoHUigrRCICIX2xCd5qicfH5PYTi99nu9dbkkNOQ6nSlBdHPW2PRsQ3Fnj2PC0Tz0gYYTEJ06wsGlTO19sPdUSFpNRaGQN-5iKu5J6OVmGoi7_QV-Ek3HUTODRSMWt-vs3X0WsMSb_tovrBqbn4_9dagoUKmKLjYSQtw4TJV2D-k1zhKjxd5rjdKd7Qdddn3qM791Sok6MzY3qo7X7o7tB5RTLX6ESqF1QrnrizgdGom6Mbn7tpUCXr-oxufAXrNbhvnt-dXuCqNANWlNMCx9o4YCSpkpprqbgNtdSMJzqQ1LJYB4nROksMiTQjOpaS2ZDaLGMJp0I50LgOU3k3NxuAIh0rGmnCDIuYFFYELqhYIoyRJnONDTioTZ72hgoc6Uhr2RssdQZLvcFS0YDt2itp9TUO0rDUWXNTcUYacFh7Ydz8e2-bf7t8D2Zvz5rp9WXragvmqPdjmSq4DVNF_83swIx6LzqD_q4P0g9C1eE6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-Situ+Loading+Test+in+Deep+Soft+Soil+and+Back+Analysis+Based+on+Machine+Learning+Method&rft.jtitle=International+journal+of+civil+engineering+%28Tehran.+Online%29&rft.au=Liu%2C+Zhicheng&rft.au=Zhang%2C+Wengang&rft.au=Zhang%2C+Xiaoguang&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1735-0522&rft.eissn=2383-3874&rft.volume=23&rft.issue=8&rft.spage=1701&rft.epage=1716&rft_id=info:doi/10.1007%2Fs40999-025-01135-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1735-0522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1735-0522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1735-0522&client=summon