Enhancing cybersecurity using optimized anti-interference dynamic integral neural network-based intrusion detection system
Cybersecurity has become a critical concern due to the exponential growth of the Internet of Things (IoT), computer networks, and associated applications, which have introduced new vulnerabilities and increased the risk of cyberattacks. Detecting such anomalies and designing an efficient intrusion d...
Saved in:
| Published in: | Knowledge and information systems Vol. 67; no. 6; pp. 5413 - 5435 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.06.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0219-1377, 0219-3116 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cybersecurity has become a critical concern due to the exponential growth of the Internet of Things (IoT), computer networks, and associated applications, which have introduced new vulnerabilities and increased the risk of cyberattacks. Detecting such anomalies and designing an efficient intrusion detection system (IDS) is essential to secure interconnected systems. Therefore, this paper proposes an enhancing cybersecurity using optimized anti-interference dynamic integral neural network-based intrusion detection system (AIDINN-CSD). Here, the input data is collected through CIC IoT 2022 dataset. The input CIC IoT 2022 dataset is preprocessed using smoothing–sharpening filter (SSF) for handling missing values and data normalization. Synthetic minority oversampling technique (SMOTE) is used for data balancing. Then, the tyrannosaurus optimization algorithm (TOA) selects relevant features from the preprocessed data. The selected features are used by anti-interference dynamic integral neural network (AIDINN) for detecting normal and attack class from the data. Then, the weight parameters of AIDINN are optimized using Capuchin search optimization algorithm (CSOA) for improving accuracy and lowering computational time. The results show that the proposed technique attains 99.23% accuracy rate, 98.97% precision and 98.47% detection rate by outperforming existing techniques. These results show the effectiveness of the AIDINN-CSD in addressing the limitations of conventional IDS, particularly its ability to handle imbalanced datasets and reduce false positives thereby offering a promising solution for enhancing IoT network security and mitigating cyber threats. |
|---|---|
| AbstractList | Cybersecurity has become a critical concern due to the exponential growth of the Internet of Things (IoT), computer networks, and associated applications, which have introduced new vulnerabilities and increased the risk of cyberattacks. Detecting such anomalies and designing an efficient intrusion detection system (IDS) is essential to secure interconnected systems. Therefore, this paper proposes an enhancing cybersecurity using optimized anti-interference dynamic integral neural network-based intrusion detection system (AIDINN-CSD). Here, the input data is collected through CIC IoT 2022 dataset. The input CIC IoT 2022 dataset is preprocessed using smoothing–sharpening filter (SSF) for handling missing values and data normalization. Synthetic minority oversampling technique (SMOTE) is used for data balancing. Then, the tyrannosaurus optimization algorithm (TOA) selects relevant features from the preprocessed data. The selected features are used by anti-interference dynamic integral neural network (AIDINN) for detecting normal and attack class from the data. Then, the weight parameters of AIDINN are optimized using Capuchin search optimization algorithm (CSOA) for improving accuracy and lowering computational time. The results show that the proposed technique attains 99.23% accuracy rate, 98.97% precision and 98.47% detection rate by outperforming existing techniques. These results show the effectiveness of the AIDINN-CSD in addressing the limitations of conventional IDS, particularly its ability to handle imbalanced datasets and reduce false positives thereby offering a promising solution for enhancing IoT network security and mitigating cyber threats. Cybersecurity has become a critical concern due to the exponential growth of the Internet of Things (IoT), computer networks, and associated applications, which have introduced new vulnerabilities and increased the risk of cyberattacks. Detecting such anomalies and designing an efficient intrusion detection system (IDS) is essential to secure interconnected systems. Therefore, this paper proposes an enhancing cybersecurity using optimized anti-interference dynamic integral neural network-based intrusion detection system (AIDINN-CSD). Here, the input data is collected through CIC IoT 2022 dataset. The input CIC IoT 2022 dataset is preprocessed using smoothing–sharpening filter (SSF) for handling missing values and data normalization. Synthetic minority oversampling technique (SMOTE) is used for data balancing. Then, the tyrannosaurus optimization algorithm (TOA) selects relevant features from the preprocessed data. The selected features are used by anti-interference dynamic integral neural network (AIDINN) for detecting normal and attack class from the data. Then, the weight parameters of AIDINN are optimized using Capuchin search optimization algorithm (CSOA) for improving accuracy and lowering computational time. The results show that the proposed technique attains 99.23% accuracy rate, 98.97% precision and 98.47% detection rate by outperforming existing techniques. These results show the effectiveness of the AIDINN-CSD in addressing the limitations of conventional IDS, particularly its ability to handle imbalanced datasets and reduce false positives thereby offering a promising solution for enhancing IoT network security and mitigating cyber threats. |
| Author | Kalwar, Anju Chaudhary, Deevesh Gupta, Sunita Shekhawat, Deepika Mishra, Neha Nawal, Meenakshi |
| Author_xml | – sequence: 1 givenname: Deevesh surname: Chaudhary fullname: Chaudhary, Deevesh organization: Department of Data Science and Engineering, Manipal University Jaipur – sequence: 2 givenname: Deepika surname: Shekhawat fullname: Shekhawat, Deepika email: dshekhawat@mum.amity.edu organization: Department of Computer Science and Engineering, Amity School of Engineering & Technology, Amity University Maharastra – sequence: 3 givenname: Sunita surname: Gupta fullname: Gupta, Sunita organization: Information Technology Department, Swami Keshvanand Institute of Technology, Management & Gramothan – sequence: 4 givenname: Anju surname: Kalwar fullname: Kalwar, Anju organization: School of Computer Science and Application, JECRC University – sequence: 5 givenname: Neha surname: Mishra fullname: Mishra, Neha organization: Department of Computer Science and Engineering, JECRC University Jaipur – sequence: 6 givenname: Meenakshi surname: Nawal fullname: Nawal, Meenakshi organization: Computer Science and Engineering Department, Swami Keshvanand Institute of Technology, Management & Gramothan |
| BookMark | eNp9UMtOwzAQtFCRaAs_wCkSZ4PXTmLliKrykCpxgbPlOOuS0jrFdoTSr8chSNw4rHY1OzOrnQWZuc4hIdfAboExeReAARSU8bFELqg4I3PGoaICoJz9ziCkvCCLEHaMgSwB5uS0du_amdZtMzPU6AOa3rdxyPowYt0xtof2hE2mXWxp6yJ6ix6dwawZnD60JhvBrdf7zGE_tfjV-Q9a65B0aeuTV-eyBiOaOE5hCBEPl-Tc6n3Aq9--JG8P69fVE928PD6v7jfUcMkjLfOy0k1T1jZ9WldciIahAeSNZCUz3OZFIRsLpoaq0rm1OZaCa11YLaTRhViSm8n36LvPHkNUu673Lp1UgrOScwBZJRafWMZ3IXi06ujbg_aDAqbGjNWUsUoZq5-MlUgiMYlCIrst-j_rf1TfJm-EnA |
| Cites_doi | 10.1016/j.cose.2022.102748 10.1007/s10586-022-03604-4 10.1016/j.comnet.2020.107784 10.1109/JAS.2021.1004344 10.1016/j.prime.2023.100243 10.1109/ACCESS.2021.3128837 10.1109/ACCESS.2020.2992249 10.1016/j.aej.2023.11.078 10.1016/j.neucom.2023.02.033 10.1016/j.future.2021.06.047 10.1109/OJSP.2021.3063076 10.1109/JIOT.2023.3289206 10.1007/s11063-022-10892-9 10.1007/s10586-022-03686-0 10.1007/s13369-023-08092-1 10.1002/9781119795667.ch12 10.1007/s42979-023-02311-0 10.1007/s13369-020-05181-3 10.1016/j.aej.2022.02.063 10.1007/s00521-020-05145-6 10.1109/JIOT.2022.3150363 10.1016/j.procs.2021.12.135 10.1007/s11227-023-05511-w 10.1109/ACCESS.2021.3059042 10.1016/j.iot.2023.100936 10.1109/ACCESS.2022.3165809 10.1063/5.0072473 10.1109/ACCESS.2022.3218624 10.1109/TII.2021.3053304 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10115-025-02343-3 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 0219-3116 |
| EndPage | 5435 |
| ExternalDocumentID | 10_1007_s10115_025_02343_3 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6KP 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAS LLZTM M0C M4Y MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX AFFHD CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c272t-6469add6bf100b9233d0ec1e2d7060c2f4557df1cb199a4ff4e632aa5fa37ca53 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445152700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0219-1377 |
| IngestDate | Sat Nov 08 14:43:50 EST 2025 Sat Nov 29 07:56:15 EST 2025 Mon Jul 21 06:06:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | CIC IoT 2022 dataset Industrial control systems Anti-interference dynamic integral neural network Smoothing–sharpening filter Capuchin search optimization algorithm Tyrannosaurus optimization algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-6469add6bf100b9233d0ec1e2d7060c2f4557df1cb199a4ff4e632aa5fa37ca53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3206221179 |
| PQPubID | 43394 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_3206221179 crossref_primary_10_1007_s10115_025_02343_3 springer_journals_10_1007_s10115_025_02343_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Knowledge and information systems |
| PublicationTitleAbbrev | Knowl Inf Syst |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | MP Novaes (2343_CR4) 2021; 125 Z Zhang (2343_CR35) 2023; 534 K Sundaram (2343_CR2) 2024; 1 MA Ferrag (2343_CR14) 2021; 9 A Mughaid (2343_CR15) 2022; 25 AM Eid (2343_CR33) 2024; 9 G Deng (2343_CR32) 2021; 2 D Akgun (2343_CR20) 2022; 118 2343_CR23 2343_CR21 K Sundaram (2343_CR5) 2023; 4 OA Alzubi (2343_CR6) 2023; 26 M Ge (2343_CR12) 2021; 186 M Ghiasi (2343_CR16) 2021; 9 K Dushyant (2343_CR19) 2022; 8 S Karthic (2343_CR1) 2023; 55 Ü Çavuşoğlu (2343_CR17) 2024; 49 NO Aljehane (2343_CR29) 2024; 86 S Karthic (2343_CR7) 2022; 14 YK Saheed (2343_CR10) 2022; 61 P Kumar (2343_CR13) 2021; 46 M Bozdal (2343_CR25) 2024; 80 VS Sahu (2343_CR34) 2023; 5 2343_CR3 B Ghimire (2343_CR9) 2022; 9 D Subitha (2343_CR22) 2022; 2022 EA Boateng (2343_CR26) 2022; 10 2343_CR31 A Al-Abassi (2343_CR24) 2020; 8 M Braik (2343_CR36) 2021; 33 KD Lu (2343_CR30) 2021; 17 MA Ferrag (2343_CR28) 2022; 10 E Anthi (2343_CR8) 2021; 58 H Suryotrisongko (2343_CR18) 2022; 197 YK Saheed (2343_CR11) 2021; 9 SA Bakhsh (2343_CR27) 2023; 24 |
| References_xml | – volume: 118 start-page: 102748 year: 2022 ident: 2343_CR20 publication-title: Comput Secur doi: 10.1016/j.cose.2022.102748 – volume: 25 start-page: 3819 issue: 6 year: 2022 ident: 2343_CR15 publication-title: Clust Comput doi: 10.1007/s10586-022-03604-4 – volume: 186 start-page: 107784 year: 2021 ident: 2343_CR12 publication-title: Comput Netw doi: 10.1016/j.comnet.2020.107784 – volume: 9 start-page: 407 issue: 3 year: 2021 ident: 2343_CR14 publication-title: IEEE/CAA J Automatica Sinica doi: 10.1109/JAS.2021.1004344 – volume: 2022 start-page: 4319549 issue: 1 year: 2022 ident: 2343_CR22 publication-title: Neural Comput Appl – volume: 5 start-page: 100243 year: 2023 ident: 2343_CR34 publication-title: E-Prime-Adv Electric Eng Electron Energy doi: 10.1016/j.prime.2023.100243 – volume: 1 start-page: 5522431 year: 2024 ident: 2343_CR2 publication-title: Wirel Commun Mob Comput – volume: 9 start-page: 161546 year: 2021 ident: 2343_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3128837 – volume: 8 start-page: 83965 year: 2020 ident: 2343_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992249 – volume: 86 start-page: 415 year: 2024 ident: 2343_CR29 publication-title: Alex Eng J doi: 10.1016/j.aej.2023.11.078 – volume: 534 start-page: 29 year: 2023 ident: 2343_CR35 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.033 – volume: 125 start-page: 156 year: 2021 ident: 2343_CR4 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2021.06.047 – volume: 2 start-page: 119 year: 2021 ident: 2343_CR32 publication-title: IEEE Open J Signal Process doi: 10.1109/OJSP.2021.3063076 – ident: 2343_CR3 doi: 10.1109/JIOT.2023.3289206 – volume: 55 start-page: 459 issue: 1 year: 2023 ident: 2343_CR1 publication-title: Neural Process Lett doi: 10.1007/s11063-022-10892-9 – volume: 26 start-page: 1363 issue: 2 year: 2023 ident: 2343_CR6 publication-title: Clust Comput doi: 10.1007/s10586-022-03686-0 – volume: 49 start-page: 3623 issue: 3 year: 2024 ident: 2343_CR17 publication-title: Arab J Sci Eng doi: 10.1007/s13369-023-08092-1 – volume: 8 start-page: 271 year: 2022 ident: 2343_CR19 publication-title: Cyber Secur Digit Forensics doi: 10.1002/9781119795667.ch12 – volume: 4 start-page: 809 issue: 6 year: 2023 ident: 2343_CR5 publication-title: SN Comput Sci doi: 10.1007/s42979-023-02311-0 – volume: 14 start-page: 3719 issue: 7 year: 2022 ident: 2343_CR7 publication-title: Int J Inf Technol – volume: 46 start-page: 3749 issue: 4 year: 2021 ident: 2343_CR13 publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-05181-3 – volume: 61 start-page: 9395 issue: 12 year: 2022 ident: 2343_CR10 publication-title: Alex Eng J doi: 10.1016/j.aej.2022.02.063 – ident: 2343_CR23 – volume: 33 start-page: 2515 issue: 7 year: 2021 ident: 2343_CR36 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05145-6 – ident: 2343_CR31 – volume: 9 start-page: 8229 issue: 11 year: 2022 ident: 2343_CR9 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3150363 – volume: 197 start-page: 223 year: 2022 ident: 2343_CR18 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2021.12.135 – volume: 80 start-page: 1059 issue: 1 year: 2024 ident: 2343_CR25 publication-title: J Supercomput doi: 10.1007/s11227-023-05511-w – volume: 9 start-page: 29429 year: 2021 ident: 2343_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3059042 – volume: 24 start-page: 100936 year: 2023 ident: 2343_CR27 publication-title: Internet Things doi: 10.1016/j.iot.2023.100936 – volume: 10 start-page: 40281 year: 2022 ident: 2343_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3165809 – volume: 58 start-page: 102717 year: 2021 ident: 2343_CR8 publication-title: J Inf Secur Appl – ident: 2343_CR21 doi: 10.1063/5.0072473 – volume: 9 start-page: 1 year: 2024 ident: 2343_CR33 publication-title: Neural Comput Appl – volume: 10 start-page: 115179 year: 2022 ident: 2343_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3218624 – volume: 17 start-page: 7618 issue: 11 year: 2021 ident: 2343_CR30 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2021.3053304 |
| SSID | ssj0017611 |
| Score | 2.3947232 |
| Snippet | Cybersecurity has become a critical concern due to the exponential growth of the Internet of Things (IoT), computer networks, and associated applications,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5413 |
| SubjectTerms | Accuracy Algorithms Brief Report Computer Science Computing time Cybersecurity Data Mining and Knowledge Discovery Database Management Datasets Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) Internet of Things Intrusion detection systems IT in Business Neural networks Optimization Optimization algorithms |
| Title | Enhancing cybersecurity using optimized anti-interference dynamic integral neural network-based intrusion detection system |
| URI | https://link.springer.com/article/10.1007/s10115-025-02343-3 https://www.proquest.com/docview/3206221179 |
| Volume | 67 |
| WOSCitedRecordID | wos001445152700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0219-3116 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: RSV dateStart: 19990201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sBTbSZyMCLViQAjxqLpFjh-lEqSoLUj013N2HQoIBpgyOLGcO9t3Z999H0LHUVQmytKcUKpdSY4WRKZCQpRicsVEZjJf4d27FFdXWb-fX4eisEmd7V5fSfqd-lOxG3gvxNGvgp2JOeHLaAXMXeYIG25uex93BxCYe5485kbAhQilMj_38dUcLXzMb9ei3tp0m_8b5wZaD94lPptPh020ZKot1KyZG3BYyNto1qkeHNBGNcDqrQQPMLDYYZcGP8Aj2EeehjOjMch9SBykxDjUBWI9p7DHAWfiETtETP_w-eTEmUXtWscv7iAOazP12V4VnoNG76D7bufu_IIEFgYCumJTkkIADZtgWlr4vRL8Qa4jo6hh2gHvKGbjJBHaUlXSPJextbFJOZMysZILJRO-ixrVqDJ7CDMItoyxtMySONYRlfCRtCZVscxklKkWOqmVUTzPwTaKBayyE2sBYi28WAveQu1aX0VYeJOCsyhlzOHctdBprZ9F8--97f_t9QO0xryK3XlMGzVAqOYQrarX6XAyPvIT8h2kld3E |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CnrxLdZnDt40sJvs8yhSUaxFfOFtyeZRC7pKWwX99U7SrFXRg572kN2QnUnmkZn5BmA3CMpYmjCnYahsSY5KqUhSgV6KziVLM525Cu-bdtrpZLe3-bkvChvU2e51SNJJ6k_Fbmi9UNt-FfVMxCmfhKkINZZFzL-4vPmIHaBj7vrkMbsCnqa-VObnOb6qo7GN-S0s6rTN0fz_1rkAc966JAej7bAIE7pagvm6cwPxB3kZ3lrVnQXaqLpEvpZoAfoudsSmwXfJI8qRh96bVgTp3qMWUqLv6wKJGrWwJx5n4p5YREz3cPnk1KpFZUf7z_Yijig9dNleFRmBRq_A9VHr6vCY-i4MFHnFhjRBBxqFYFIa_L0S7UGuAi1DzZQF3pHMRHGcKhPKMsxzERkT6YQzIWIjeCpFzFehUT1Weg0IQ2dLaxOWWRxFKggFfiSMTmQkMhFksgl7NTOKpxHYRjGGVbZkLZCshSNrwZuwWfOr8AdvUHAWJIxZnLsm7Nf8GQ__Ptv6317fgZnjq7N20T7pnG7ALHPstnczm9BAAustmJYvw96gv-025zsSueCo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CXFhPMV45sANItqkzyMCJhDThARM3Ko0D5gEZdoGEvx64rRlA8EBceohbZTaSWwn_j4D7HteHkrjp9T3FUJyVExFFAsbpehUsjjRiUN4d9txp5Pc3aVXEyh-l-1eX0mWmAZkaSpGR31ljiaAb9aToViK1dqcgFM-DbMBJtJjvH7d_bxHsEG6q5nHcDQ8jivYzM99fDVNY3_z2xWpszytxv_HvASLlddJjstpsgxTuliBRl3RgVQLfBXez4oHJOAo7ol8y61nWFW3I5gef0-e7f7y1HvXilh99ChSTQwqvCBRZWl7UvFPPBJkynQPl2dO0VwqbB284AEdUXrkssAKUpJJr8Ft6-zm5JxW1Rmo1SEb0cgG1nZzjHJjfy-3fiJXnpa-ZgoJeSQzQRjGyvgy99NUBMYEOuJMiNAIHksR8nWYKZ4LvQGE2SBMa-PnSRgEyvOF_UgYHclAJMJLZBMOasVk_ZKEIxvTLaNYMyvWzIk1403YrnWXVQtymHHmRYwh_10TDmtdjZt_723zb6_vwfzVaStrX3Qut2CBOW3jkc02zFj56h2Yk6-j3nCw6-bpBxVk6Yw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+cybersecurity+using+optimized+anti-interference+dynamic+integral+neural+network-based+intrusion+detection+system&rft.jtitle=Knowledge+and+information+systems&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=67&rft.issue=6&rft.spage=5413&rft.epage=5435&rft_id=info:doi/10.1007%2Fs10115-025-02343-3&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon |