Enhancing cybersecurity using optimized anti-interference dynamic integral neural network-based intrusion detection system

Cybersecurity has become a critical concern due to the exponential growth of the Internet of Things (IoT), computer networks, and associated applications, which have introduced new vulnerabilities and increased the risk of cyberattacks. Detecting such anomalies and designing an efficient intrusion d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge and information systems Ročník 67; číslo 6; s. 5413 - 5435
Hlavní autoři: Chaudhary, Deevesh, Shekhawat, Deepika, Gupta, Sunita, Kalwar, Anju, Mishra, Neha, Nawal, Meenakshi
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.06.2025
Springer Nature B.V
Témata:
ISSN:0219-1377, 0219-3116
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cybersecurity has become a critical concern due to the exponential growth of the Internet of Things (IoT), computer networks, and associated applications, which have introduced new vulnerabilities and increased the risk of cyberattacks. Detecting such anomalies and designing an efficient intrusion detection system (IDS) is essential to secure interconnected systems. Therefore, this paper proposes an enhancing cybersecurity using optimized anti-interference dynamic integral neural network-based intrusion detection system (AIDINN-CSD). Here, the input data is collected through CIC IoT 2022 dataset. The input CIC IoT 2022 dataset is preprocessed using smoothing–sharpening filter (SSF) for handling missing values and data normalization. Synthetic minority oversampling technique (SMOTE) is used for data balancing. Then, the tyrannosaurus optimization algorithm (TOA) selects relevant features from the preprocessed data. The selected features are used by anti-interference dynamic integral neural network (AIDINN) for detecting normal and attack class from the data. Then, the weight parameters of AIDINN are optimized using Capuchin search optimization algorithm (CSOA) for improving accuracy and lowering computational time. The results show that the proposed technique attains 99.23% accuracy rate, 98.97% precision and 98.47% detection rate by outperforming existing techniques. These results show the effectiveness of the AIDINN-CSD in addressing the limitations of conventional IDS, particularly its ability to handle imbalanced datasets and reduce false positives thereby offering a promising solution for enhancing IoT network security and mitigating cyber threats.
AbstractList Cybersecurity has become a critical concern due to the exponential growth of the Internet of Things (IoT), computer networks, and associated applications, which have introduced new vulnerabilities and increased the risk of cyberattacks. Detecting such anomalies and designing an efficient intrusion detection system (IDS) is essential to secure interconnected systems. Therefore, this paper proposes an enhancing cybersecurity using optimized anti-interference dynamic integral neural network-based intrusion detection system (AIDINN-CSD). Here, the input data is collected through CIC IoT 2022 dataset. The input CIC IoT 2022 dataset is preprocessed using smoothing–sharpening filter (SSF) for handling missing values and data normalization. Synthetic minority oversampling technique (SMOTE) is used for data balancing. Then, the tyrannosaurus optimization algorithm (TOA) selects relevant features from the preprocessed data. The selected features are used by anti-interference dynamic integral neural network (AIDINN) for detecting normal and attack class from the data. Then, the weight parameters of AIDINN are optimized using Capuchin search optimization algorithm (CSOA) for improving accuracy and lowering computational time. The results show that the proposed technique attains 99.23% accuracy rate, 98.97% precision and 98.47% detection rate by outperforming existing techniques. These results show the effectiveness of the AIDINN-CSD in addressing the limitations of conventional IDS, particularly its ability to handle imbalanced datasets and reduce false positives thereby offering a promising solution for enhancing IoT network security and mitigating cyber threats.
Cybersecurity has become a critical concern due to the exponential growth of the Internet of Things (IoT), computer networks, and associated applications, which have introduced new vulnerabilities and increased the risk of cyberattacks. Detecting such anomalies and designing an efficient intrusion detection system (IDS) is essential to secure interconnected systems. Therefore, this paper proposes an enhancing cybersecurity using optimized anti-interference dynamic integral neural network-based intrusion detection system (AIDINN-CSD). Here, the input data is collected through CIC IoT 2022 dataset. The input CIC IoT 2022 dataset is preprocessed using smoothing–sharpening filter (SSF) for handling missing values and data normalization. Synthetic minority oversampling technique (SMOTE) is used for data balancing. Then, the tyrannosaurus optimization algorithm (TOA) selects relevant features from the preprocessed data. The selected features are used by anti-interference dynamic integral neural network (AIDINN) for detecting normal and attack class from the data. Then, the weight parameters of AIDINN are optimized using Capuchin search optimization algorithm (CSOA) for improving accuracy and lowering computational time. The results show that the proposed technique attains 99.23% accuracy rate, 98.97% precision and 98.47% detection rate by outperforming existing techniques. These results show the effectiveness of the AIDINN-CSD in addressing the limitations of conventional IDS, particularly its ability to handle imbalanced datasets and reduce false positives thereby offering a promising solution for enhancing IoT network security and mitigating cyber threats.
Author Kalwar, Anju
Chaudhary, Deevesh
Gupta, Sunita
Shekhawat, Deepika
Mishra, Neha
Nawal, Meenakshi
Author_xml – sequence: 1
  givenname: Deevesh
  surname: Chaudhary
  fullname: Chaudhary, Deevesh
  organization: Department of Data Science and Engineering, Manipal University Jaipur
– sequence: 2
  givenname: Deepika
  surname: Shekhawat
  fullname: Shekhawat, Deepika
  email: dshekhawat@mum.amity.edu
  organization: Department of Computer Science and Engineering, Amity School of Engineering & Technology, Amity University Maharastra
– sequence: 3
  givenname: Sunita
  surname: Gupta
  fullname: Gupta, Sunita
  organization: Information Technology Department, Swami Keshvanand Institute of Technology, Management & Gramothan
– sequence: 4
  givenname: Anju
  surname: Kalwar
  fullname: Kalwar, Anju
  organization: School of Computer Science and Application, JECRC University
– sequence: 5
  givenname: Neha
  surname: Mishra
  fullname: Mishra, Neha
  organization: Department of Computer Science and Engineering, JECRC University Jaipur
– sequence: 6
  givenname: Meenakshi
  surname: Nawal
  fullname: Nawal, Meenakshi
  organization: Computer Science and Engineering Department, Swami Keshvanand Institute of Technology, Management & Gramothan
BookMark eNp9UMtOwzAQtFCRaAs_wCkSZ4PXTmLliKrykCpxgbPlOOuS0jrFdoTSr8chSNw4rHY1OzOrnQWZuc4hIdfAboExeReAARSU8bFELqg4I3PGoaICoJz9ziCkvCCLEHaMgSwB5uS0du_amdZtMzPU6AOa3rdxyPowYt0xtof2hE2mXWxp6yJ6ix6dwawZnD60JhvBrdf7zGE_tfjV-Q9a65B0aeuTV-eyBiOaOE5hCBEPl-Tc6n3Aq9--JG8P69fVE928PD6v7jfUcMkjLfOy0k1T1jZ9WldciIahAeSNZCUz3OZFIRsLpoaq0rm1OZaCa11YLaTRhViSm8n36LvPHkNUu673Lp1UgrOScwBZJRafWMZ3IXi06ujbg_aDAqbGjNWUsUoZq5-MlUgiMYlCIrst-j_rf1TfJm-EnA
Cites_doi 10.1016/j.cose.2022.102748
10.1007/s10586-022-03604-4
10.1016/j.comnet.2020.107784
10.1109/JAS.2021.1004344
10.1016/j.prime.2023.100243
10.1109/ACCESS.2021.3128837
10.1109/ACCESS.2020.2992249
10.1016/j.aej.2023.11.078
10.1016/j.neucom.2023.02.033
10.1016/j.future.2021.06.047
10.1109/OJSP.2021.3063076
10.1109/JIOT.2023.3289206
10.1007/s11063-022-10892-9
10.1007/s10586-022-03686-0
10.1007/s13369-023-08092-1
10.1002/9781119795667.ch12
10.1007/s42979-023-02311-0
10.1007/s13369-020-05181-3
10.1016/j.aej.2022.02.063
10.1007/s00521-020-05145-6
10.1109/JIOT.2022.3150363
10.1016/j.procs.2021.12.135
10.1007/s11227-023-05511-w
10.1109/ACCESS.2021.3059042
10.1016/j.iot.2023.100936
10.1109/ACCESS.2022.3165809
10.1063/5.0072473
10.1109/ACCESS.2022.3218624
10.1109/TII.2021.3053304
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10115-025-02343-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0219-3116
EndPage 5435
ExternalDocumentID 10_1007_s10115_025_02343_3
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
AFFHD
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-6469add6bf100b9233d0ec1e2d7060c2f4557df1cb199a4ff4e632aa5fa37ca53
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445152700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0219-1377
IngestDate Sat Nov 08 14:43:50 EST 2025
Sat Nov 29 07:56:15 EST 2025
Mon Jul 21 06:06:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords CIC IoT 2022 dataset
Industrial control systems
Anti-interference dynamic integral neural network
Smoothing–sharpening filter
Capuchin search optimization algorithm
Tyrannosaurus optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-6469add6bf100b9233d0ec1e2d7060c2f4557df1cb199a4ff4e632aa5fa37ca53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3206221179
PQPubID 43394
PageCount 23
ParticipantIDs proquest_journals_3206221179
crossref_primary_10_1007_s10115_025_02343_3
springer_journals_10_1007_s10115_025_02343_3
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References MP Novaes (2343_CR4) 2021; 125
Z Zhang (2343_CR35) 2023; 534
K Sundaram (2343_CR2) 2024; 1
MA Ferrag (2343_CR14) 2021; 9
A Mughaid (2343_CR15) 2022; 25
AM Eid (2343_CR33) 2024; 9
G Deng (2343_CR32) 2021; 2
D Akgun (2343_CR20) 2022; 118
2343_CR23
2343_CR21
K Sundaram (2343_CR5) 2023; 4
OA Alzubi (2343_CR6) 2023; 26
M Ge (2343_CR12) 2021; 186
M Ghiasi (2343_CR16) 2021; 9
K Dushyant (2343_CR19) 2022; 8
S Karthic (2343_CR1) 2023; 55
Ü Çavuşoğlu (2343_CR17) 2024; 49
NO Aljehane (2343_CR29) 2024; 86
S Karthic (2343_CR7) 2022; 14
YK Saheed (2343_CR10) 2022; 61
P Kumar (2343_CR13) 2021; 46
M Bozdal (2343_CR25) 2024; 80
VS Sahu (2343_CR34) 2023; 5
2343_CR3
B Ghimire (2343_CR9) 2022; 9
D Subitha (2343_CR22) 2022; 2022
EA Boateng (2343_CR26) 2022; 10
2343_CR31
A Al-Abassi (2343_CR24) 2020; 8
M Braik (2343_CR36) 2021; 33
KD Lu (2343_CR30) 2021; 17
MA Ferrag (2343_CR28) 2022; 10
E Anthi (2343_CR8) 2021; 58
H Suryotrisongko (2343_CR18) 2022; 197
YK Saheed (2343_CR11) 2021; 9
SA Bakhsh (2343_CR27) 2023; 24
References_xml – volume: 118
  start-page: 102748
  year: 2022
  ident: 2343_CR20
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2022.102748
– volume: 25
  start-page: 3819
  issue: 6
  year: 2022
  ident: 2343_CR15
  publication-title: Clust Comput
  doi: 10.1007/s10586-022-03604-4
– volume: 186
  start-page: 107784
  year: 2021
  ident: 2343_CR12
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2020.107784
– volume: 9
  start-page: 407
  issue: 3
  year: 2021
  ident: 2343_CR14
  publication-title: IEEE/CAA J Automatica Sinica
  doi: 10.1109/JAS.2021.1004344
– volume: 2022
  start-page: 4319549
  issue: 1
  year: 2022
  ident: 2343_CR22
  publication-title: Neural Comput Appl
– volume: 5
  start-page: 100243
  year: 2023
  ident: 2343_CR34
  publication-title: E-Prime-Adv Electric Eng Electron Energy
  doi: 10.1016/j.prime.2023.100243
– volume: 1
  start-page: 5522431
  year: 2024
  ident: 2343_CR2
  publication-title: Wirel Commun Mob Comput
– volume: 9
  start-page: 161546
  year: 2021
  ident: 2343_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3128837
– volume: 8
  start-page: 83965
  year: 2020
  ident: 2343_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992249
– volume: 86
  start-page: 415
  year: 2024
  ident: 2343_CR29
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2023.11.078
– volume: 534
  start-page: 29
  year: 2023
  ident: 2343_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.033
– volume: 125
  start-page: 156
  year: 2021
  ident: 2343_CR4
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2021.06.047
– volume: 2
  start-page: 119
  year: 2021
  ident: 2343_CR32
  publication-title: IEEE Open J Signal Process
  doi: 10.1109/OJSP.2021.3063076
– ident: 2343_CR3
  doi: 10.1109/JIOT.2023.3289206
– volume: 55
  start-page: 459
  issue: 1
  year: 2023
  ident: 2343_CR1
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-022-10892-9
– volume: 26
  start-page: 1363
  issue: 2
  year: 2023
  ident: 2343_CR6
  publication-title: Clust Comput
  doi: 10.1007/s10586-022-03686-0
– volume: 49
  start-page: 3623
  issue: 3
  year: 2024
  ident: 2343_CR17
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-023-08092-1
– volume: 8
  start-page: 271
  year: 2022
  ident: 2343_CR19
  publication-title: Cyber Secur Digit Forensics
  doi: 10.1002/9781119795667.ch12
– volume: 4
  start-page: 809
  issue: 6
  year: 2023
  ident: 2343_CR5
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-023-02311-0
– volume: 14
  start-page: 3719
  issue: 7
  year: 2022
  ident: 2343_CR7
  publication-title: Int J Inf Technol
– volume: 46
  start-page: 3749
  issue: 4
  year: 2021
  ident: 2343_CR13
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-05181-3
– volume: 61
  start-page: 9395
  issue: 12
  year: 2022
  ident: 2343_CR10
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2022.02.063
– ident: 2343_CR23
– volume: 33
  start-page: 2515
  issue: 7
  year: 2021
  ident: 2343_CR36
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05145-6
– ident: 2343_CR31
– volume: 9
  start-page: 8229
  issue: 11
  year: 2022
  ident: 2343_CR9
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3150363
– volume: 197
  start-page: 223
  year: 2022
  ident: 2343_CR18
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2021.12.135
– volume: 80
  start-page: 1059
  issue: 1
  year: 2024
  ident: 2343_CR25
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05511-w
– volume: 9
  start-page: 29429
  year: 2021
  ident: 2343_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3059042
– volume: 24
  start-page: 100936
  year: 2023
  ident: 2343_CR27
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.100936
– volume: 10
  start-page: 40281
  year: 2022
  ident: 2343_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3165809
– volume: 58
  start-page: 102717
  year: 2021
  ident: 2343_CR8
  publication-title: J Inf Secur Appl
– ident: 2343_CR21
  doi: 10.1063/5.0072473
– volume: 9
  start-page: 1
  year: 2024
  ident: 2343_CR33
  publication-title: Neural Comput Appl
– volume: 10
  start-page: 115179
  year: 2022
  ident: 2343_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3218624
– volume: 17
  start-page: 7618
  issue: 11
  year: 2021
  ident: 2343_CR30
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2021.3053304
SSID ssj0017611
Score 2.3947232
Snippet Cybersecurity has become a critical concern due to the exponential growth of the Internet of Things (IoT), computer networks, and associated applications,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 5413
SubjectTerms Accuracy
Algorithms
Brief Report
Computer Science
Computing time
Cybersecurity
Data Mining and Knowledge Discovery
Database Management
Datasets
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
Internet of Things
Intrusion detection systems
IT in Business
Neural networks
Optimization
Optimization algorithms
Title Enhancing cybersecurity using optimized anti-interference dynamic integral neural network-based intrusion detection system
URI https://link.springer.com/article/10.1007/s10115-025-02343-3
https://www.proquest.com/docview/3206221179
Volume 67
WOSCitedRecordID wos001445152700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: RSV
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYWChPEWhIA9sYKmxndeIUCsmhHipWxS_SiVIUVuQ6K_n7DoUEAwwZXBkJXc-39l3930Ax1LYWOZKUCVESoXVGUWvGNMEvV9mMODnRniyifTyMuv386vQFDapq93rlKTfqT81u2H0Qh39KvoZwSlfhhV0d5kjbLi-uf_IHeDB3PPkoS1Sh6cXWmV-nuOrO1rEmN_Sot7b9Jr_-84NWA_RJTmbL4dNWDLVFjRr5gYSDHkbZt3qwQFtVAOi3iRGgIHFjrgy-AEZ4T7yNJwZTVDuQ-ogJcahL5DoOYU9CTgTj8QhYvqHryenzi1qNzp-cRdxRJupr_aqyBw0egfuet3b8wsaWBioYimb0gQP0LgJJtLi70mMB7nuGBUZph3wjmJWxHGqbaRklOelsFaYhLOyjG3JU1XGfBca1agye0CsdFnY2KYm4kJJWWI0wo2SNlZRaoVuwUmtjOJ5DrZRLGCVnVgLFGvhxVrwFrRrfRXB8CYFZ52EMYdz14LTWj-L4d9n2__b6wewxryK3X1MGxooVHMIq-p1OpyMj_yCfAd5Y924
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SXBhPMVgQA7cIBJN0nY7IjQEAiYEA-1WNa8xCQraBhL79ThZygDBAU49pIpaO87nxPZngD0pbCwbSlAlREqF1XWKqBjTBNGvbtDh50b4ZhNpq1XvdBpXoShsUGa7lyFJv1N_KnZD74W69quIM4JTPg2zAhHLMeZf39x9xA7wYO775KEtUsenF0plfp7jKxxNfMxvYVGPNieV_33nEiwG75IcjZfDMkyZYgUqZecGEgx5FUbN4t4RbRRdot4keoChix1xafBd8oT7yGNvZDRBufeoo5Toh7pAosct7EngmXggjhHTP3w-OXWwqN1o_8VdxBFthj7bqyBj0ug1uD1pto9PaejCQBVL2ZAmeIDGTTCRFn9Poj_I9aFRkWHaEe8oZkUcp9pGSkaNRi6sFSbhLM9jm_NU5TFfh5niqTAbQKx0UdjYpibiQkmZozfCjZI2VlFqha7CfqmM7HlMtpFNaJWdWDMUa-bFmvEq1Ep9ZcHwBhlnhwljjueuCgelfibDv8-2-bfXd2H-tH15kV2ctc63YIF5dbu7mRrMoIDNNsyp12Fv0N_xi_Md5ujgnA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV58i-szB28atEna7h5FXRRlEXzgrTSvdUGrrKugv96ZtHVV9CCeekgJ7Uwm8yUz8w3AllY-1i2juFEq5crbJkevGPMEvV_TIeCXToVmE2mn07y5aZ1_quIP2e51SLKsaSCWpmKw-2j97qfCN0QynFqxos9RkstRGFeUSE_n9YvrjzgCHtJDzzy0S07celXZzM9zfHVNQ7z5LUQaPE975v_fPAvTFepk--UymYMRV8zDTN3RgVUGvgBvR8UtEXAUXWZeNSLDqrsdo_T4LnvA_eW-9-YsQ330OFFN9Kt6QWbL1vas4p-4Y8SUGR4hz5yTu7Q02n-mCzpm3SBkgRWsJJNehKv20eXBMa-6M3AjUjHgCR6scXNMtMff04gTpd1zJnLCEiGPEV7FcWp9ZHTUauXKe-USKfI89rlMTR7LJRgrHgq3DMxris7GPnWRVEbrHFGKdEb72ESpV7YB27VisseShCMb0i2TWDMUaxbEmskGrNW6yyqDfMqk2EuEIP67BuzUuhoO_z7byt9e34TJ88N2dnbSOV2FKRG0TVc2azCG8nXrMGFeBr2n_kZYp-_nv-mA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+cybersecurity+using+optimized+anti-interference+dynamic+integral+neural+network-based+intrusion+detection+system&rft.jtitle=Knowledge+and+information+systems&rft.au=Chaudhary%2C+Deevesh&rft.au=Shekhawat%2C+Deepika&rft.au=Gupta%2C+Sunita&rft.au=Kalwar%2C+Anju&rft.date=2025-06-01&rft.pub=Springer+London&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=67&rft.issue=6&rft.spage=5413&rft.epage=5435&rft_id=info:doi/10.1007%2Fs10115-025-02343-3&rft.externalDocID=10_1007_s10115_025_02343_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon