Quantum-inspired adaptive mutation operator enabled PSO (QAMO-PSO) for parallel optimization and tailoring parameters of Kolmogorov–Arnold network

Particle swarm optimizer (PSO) is a biomimetic optimization algorithm well-known for its potential in addressing diversified optimization problems (OP). Although PSO is based on swarm-cognitive, it often suffers from attaining the global optima and the balance between exploration and exploitation, l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing Jg. 81; H. 14; S. 1310
Hauptverfasser: Agrawal, Umang Kumar, Panda, Nibedan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 06.09.2025
Springer Nature B.V
Schlagworte:
ISSN:1573-0484, 0920-8542, 1573-0484
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Particle swarm optimizer (PSO) is a biomimetic optimization algorithm well-known for its potential in addressing diversified optimization problems (OP). Although PSO is based on swarm-cognitive, it often suffers from attaining the global optima and the balance between exploration and exploitation, leading to untimely convergence and compromised outcomes. To enhance such shortcomings, we have proposed the quantum adaptive mutation operator PSO (QAMO-PSO), where the QAMO is integrated with the standard PSO. In the suggested approach, the qubit dynamics and adaptable mutation concept are employed to amplify the search region of swarms, while preserving superior outcomes by altering the locations of swarms concerning the quanta rotation and including a dynamic quantum-inspired mutation mechanism. The QAMO frameworks concurrently modify the mutation likelihood regarding the global best fitness, adhering it to randomness to suppress the confined optima alongside accelerating optimal convergence. The competency of QAMO-PSO is rigorously quantified over the IEEE-CEC-2022 benchmark problem suite. The anticipated QAMO-PSO reveals commendable findings over the shifted and rotated (SR), hybrid and composition functions pertaining to CEC-2022. Furthermore, a cascade of statistical analysis is conducted to substantiate the distinctiveness of QAMO-PSO. Additionally, the applicability of QAMO-PSO is assessed in real-life constraints by tuning the hyperparameters of Kolmogorov–Arnold network (KAN), showcasing its efficacy in multivariate and nonlinear feature space. The QAMO-PSO as a trainer algorithm for KAN reveals prevailing results over the other baseline algorithms. Finally, the QAMO-PSO is a viable and reliable hybrid algorithm (HA) to tackle optimization problems related to engineering and computational cognition.
AbstractList Particle swarm optimizer (PSO) is a biomimetic optimization algorithm well-known for its potential in addressing diversified optimization problems (OP). Although PSO is based on swarm-cognitive, it often suffers from attaining the global optima and the balance between exploration and exploitation, leading to untimely convergence and compromised outcomes. To enhance such shortcomings, we have proposed the quantum adaptive mutation operator PSO (QAMO-PSO), where the QAMO is integrated with the standard PSO. In the suggested approach, the qubit dynamics and adaptable mutation concept are employed to amplify the search region of swarms, while preserving superior outcomes by altering the locations of swarms concerning the quanta rotation and including a dynamic quantum-inspired mutation mechanism. The QAMO frameworks concurrently modify the mutation likelihood regarding the global best fitness, adhering it to randomness to suppress the confined optima alongside accelerating optimal convergence. The competency of QAMO-PSO is rigorously quantified over the IEEE-CEC-2022 benchmark problem suite. The anticipated QAMO-PSO reveals commendable findings over the shifted and rotated (SR), hybrid and composition functions pertaining to CEC-2022. Furthermore, a cascade of statistical analysis is conducted to substantiate the distinctiveness of QAMO-PSO. Additionally, the applicability of QAMO-PSO is assessed in real-life constraints by tuning the hyperparameters of Kolmogorov–Arnold network (KAN), showcasing its efficacy in multivariate and nonlinear feature space. The QAMO-PSO as a trainer algorithm for KAN reveals prevailing results over the other baseline algorithms. Finally, the QAMO-PSO is a viable and reliable hybrid algorithm (HA) to tackle optimization problems related to engineering and computational cognition.
ArticleNumber 1310
Author Agrawal, Umang Kumar
Panda, Nibedan
Author_xml – sequence: 1
  givenname: Umang Kumar
  surname: Agrawal
  fullname: Agrawal, Umang Kumar
  organization: School of Computer Engineering, KIIT Deemed to Be University
– sequence: 2
  givenname: Nibedan
  surname: Panda
  fullname: Panda, Nibedan
  email: nibedan.pandafcs@kiit.ac.in
  organization: School of Computer Engineering, KIIT Deemed to Be University
BookMark eNp9kM1O3TAQha2KSuWnL8DKUjftwuB_5y6vUGkRVLeIsracZIJMEzu1Ha7aVd-hPCFPQiCV2hWrOdJ854zm7KGdEAMgdMjoEaPUHGfGODeEckWoqRgl21dolykjCJWV3PlPv0F7Od9SSqUwYhfdX04ulGkgPuTRJ2ixa91Y_B3gYSqu-BhwHCG5EhOG4Op-Rr5ebfD7y_WXDZnVB9zNq9El1_fQz3Dxg_-1OF1ocXG-j8mHm2dmgAIp49jh89gP8SamePfw-886hdi3OEDZxvT9AL3uXJ_h7d-5j65PP347-UwuNp_OTtYXpOGGF6KqWpiV1i3TIMGt2IoaqWmjqei0EQp4DaLmlVZKVJQ5CbJVuhFsVTNuGiX20bsld0zxxwS52Ns4pTCftIIrwyXTks4UX6gmxZwTdHZMfnDpp2XUPrVvl_bt3L59bt9uZ5NYTHl8-h3Sv-gXXI80iYyC
Cites_doi 10.1007/s10489-024-06096-4
10.1016/j.engappai.2024.109987
10.1111/coin.12272
10.1016/j.future.2020.03.055
10.1016/j.aei.2024.102464
10.1007/s11227-024-06507-w
10.1007/s00422-025-01004-6
10.1016/j.engappai.2021.104314
10.1016/j.procs.2025.04.663
10.1016/j.future.2024.04.008
10.1016/j.cma.2024.117699
10.1007/s11071-024-10245-2
10.1007/s10586-023-03993-0
10.1016/j.eswa.2023.121270
10.1109/ICNN.1995.488968
10.1007/978-981-96-0047-2_19
10.1038/s41598-022-18351-0
10.1002/advs.202413805
10.1109/ACCESS.2023.3286347
10.1007/978-981-15-6353-9_8
10.1038/s41598-025-90040-0
10.1038/s41598-024-85083-8
10.1007/s11227-025-07324-5
10.1038/s41598-024-69360-0
10.1007/s13369-019-04132-x
10.1007/s10586-024-04833-5
10.1016/j.jmsy.2024.02.007
10.1016/j.compbiomed.2024.108064
10.1016/j.cma.2020.113609
10.1016/j.neucom.2025.129414
10.1186/s40537-025-01116-7
10.1016/j.eswa.2024.125496
10.1007/s10479-023-05228-2
10.1016/j.apenergy.2024.124748
10.1016/j.egyr.2024.12.038
10.1016/j.swevo.2024.101836
10.1007/s13369-022-07408-x
10.1016/j.knosys.2021.106859
10.1007/s10586-024-04750-7
10.1007/s10462-024-11023-7
10.1016/j.eswa.2025.126406
10.1016/j.cma.2022.114616
10.1016/j.procs.2025.04.064
10.1109/4235.585893
10.1109/ACCESS.2021.3115026
10.1038/s41598-025-88054-9
10.1016/j.csite.2025.105815
10.1007/s11227-024-06022-y
10.1016/j.ins.2018.08.030
10.1007/s11042-020-10304-x
10.1016/j.asoc.2021.107122
10.1016/j.neucom.2024.128427
10.1016/j.eswa.2021.115353
10.1016/j.knosys.2019.105190
10.1007/s11063-022-10850-5
10.1016/j.oceaneng.2025.120704
10.1007/s13369-024-09113-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-025-07810-w
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Physics
EISSN 1573-0484
ExternalDocumentID 10_1007_s11227_025_07810_w
GroupedDBID -~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
MA-
N9A
NB0
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
BGNMA
CCPQU
CITATION
M4Y
NU0
JQ2
ID FETCH-LOGICAL-c272t-58b37966d16e4ea91907460c603f6735e2be3b286553801a4e4d56c319b127c53
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001564873400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-0484
0920-8542
IngestDate Mon Oct 27 04:06:25 EDT 2025
Sat Nov 29 07:33:45 EST 2025
Sun Sep 07 01:10:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Swarm intelligence
Quantum adaptive mutation operator
Kolmogorov–Arnold network
Qubit
Particle swarm optimization
Hybrid algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-58b37966d16e4ea91907460c603f6735e2be3b286553801a4e4d56c319b127c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3257241640
PQPubID 2043774
ParticipantIDs proquest_journals_3257241640
crossref_primary_10_1007_s11227_025_07810_w
springer_journals_10_1007_s11227_025_07810_w
PublicationCentury 2000
PublicationDate 2025-09-06
PublicationDateYYYYMMDD 2025-09-06
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-06
  day: 06
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 7810_CR8
H Ding (7810_CR36) 2025; 113
MM Krishna (7810_CR52) 2021; 183
A Tian (7810_CR6) 2025; 378
M Bey (7810_CR23) 2024; 236
Y Xiao (7810_CR48) 2024; 61
H Zamani (7810_CR45) 2021; 104
X Wang (7810_CR5) 2025; 346
J Zhang (7810_CR16) 2025; 81
R Vaze (7810_CR35) 2021; 219
Y Xu (7810_CR28) 2024; 73
AA Aghaei (7810_CR58) 2025; 623
7810_CR51
N Panda (7810_CR20) 2020; 45
A Faramarzi (7810_CR44) 2020; 191
C Gong (7810_CR24) 2024; 157
7810_CR53
MU Danish (7810_CR60) 2025; 13
DH Wolpert (7810_CR12) 1997; 1
7810_CR54
A Pikovsky (7810_CR3) 2025; 119
RK Agrawal (7810_CR33) 2021; 102
C Yuan (7810_CR43) 2024; 607
AK Mahapatra (7810_CR1) 2025; 81
AA Abd El-Latif (7810_CR29) 2023; 11
BB Naik (7810_CR40) 2025; 28
DW Abueidda (7810_CR59) 2025; 436
UK Agrawal (7810_CR7) 2025; 259
J Yan (7810_CR15) 2025; 324
7810_CR19
AP Piotrowski (7810_CR42) 2018; 468
7810_CR17
H Zamani (7810_CR41) 2022; 392
MS Ramkumar (7810_CR13) 2025
TP Nguyen (7810_CR9) 2025; 143
UK Agrawal (7810_CR10) 2025; 258
SN Ghorpade (7810_CR34) 2021; 9
AK Mahapatra (7810_CR55) 2023; 15
Y Wang (7810_CR56) 2025
N Panda (7810_CR18) 2020; 36
S Li (7810_CR49) 2020; 111
AK Mahapatra (7810_CR21) 2025; 28
Y Wu (7810_CR57) 2025; 15
K Paul (7810_CR37) 2025; 15
AK Mahapatra (7810_CR2) 2025; 50
D Naik (7810_CR26) 2024; 27
Y Xiao (7810_CR46) 2025; 58
B Mbarki (7810_CR14) 2025; 13
AK Mahapatra (7810_CR31) 2023; 48
C Li (7810_CR39) 2025; 261
E Baş (7810_CR30) 2023; 55
N Panda (7810_CR38) 2021; 80
Z Wang (7810_CR61) 2025; 15
J Lian (7810_CR50) 2024; 172
S Fallahi (7810_CR32) 2022; 12
H Qi (7810_CR27) 2024; 80
L Ran (7810_CR11) 2025; 269
Y Xu (7810_CR22) 2025; 93
L Abualigah (7810_CR47) 2021; 376
B Zheng (7810_CR62) 2025; 12
P Yi (7810_CR4) 2025; 55
H Hu (7810_CR25) 2024; 14
References_xml – volume: 55
  start-page: 233
  issue: 3
  year: 2025
  ident: 7810_CR4
  publication-title: Appl Intell
  doi: 10.1007/s10489-024-06096-4
– volume: 143
  year: 2025
  ident: 7810_CR9
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.109987
– volume: 36
  start-page: 320
  issue: 1
  year: 2020
  ident: 7810_CR18
  publication-title: Comput Intell
  doi: 10.1111/coin.12272
– volume: 111
  start-page: 300
  year: 2020
  ident: 7810_CR49
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.03.055
– volume: 61
  year: 2024
  ident: 7810_CR48
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2024.102464
– volume: 81
  start-page: 1
  issue: 1
  year: 2025
  ident: 7810_CR1
  publication-title: J Supercomput
  doi: 10.1007/s11227-024-06507-w
– volume: 119
  start-page: 5
  issue: 1
  year: 2025
  ident: 7810_CR3
  publication-title: Biol Cybern
  doi: 10.1007/s00422-025-01004-6
– volume: 104
  year: 2021
  ident: 7810_CR45
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104314
– ident: 7810_CR19
– volume: 258
  start-page: 4128
  year: 2025
  ident: 7810_CR10
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2025.04.663
– volume: 157
  start-page: 445
  year: 2024
  ident: 7810_CR24
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2024.04.008
– volume: 436
  year: 2025
  ident: 7810_CR59
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2024.117699
– volume: 113
  start-page: 629
  issue: 1
  year: 2025
  ident: 7810_CR36
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-024-10245-2
– volume: 27
  start-page: 997
  issue: 1
  year: 2024
  ident: 7810_CR26
  publication-title: Cluster Comput
  doi: 10.1007/s10586-023-03993-0
– volume: 236
  year: 2024
  ident: 7810_CR23
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121270
– ident: 7810_CR8
  doi: 10.1109/ICNN.1995.488968
– ident: 7810_CR17
  doi: 10.1007/978-981-96-0047-2_19
– volume: 12
  start-page: 13977
  issue: 1
  year: 2022
  ident: 7810_CR32
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-18351-0
– year: 2025
  ident: 7810_CR56
  publication-title: Adv Sci
  doi: 10.1002/advs.202413805
– volume: 11
  start-page: 71143
  year: 2023
  ident: 7810_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3286347
– ident: 7810_CR51
  doi: 10.1007/978-981-15-6353-9_8
– volume: 15
  start-page: 5843
  issue: 1
  year: 2025
  ident: 7810_CR37
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-90040-0
– volume: 15
  start-page: 1917
  issue: 1
  year: 2025
  ident: 7810_CR61
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-85083-8
– ident: 7810_CR54
– volume: 81
  start-page: 1
  issue: 8
  year: 2025
  ident: 7810_CR16
  publication-title: J Supercomput
  doi: 10.1007/s11227-025-07324-5
– volume: 14
  start-page: 18595
  issue: 1
  year: 2024
  ident: 7810_CR25
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-69360-0
– volume: 45
  start-page: 2743
  issue: 4
  year: 2020
  ident: 7810_CR20
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-04132-x
– volume: 28
  start-page: 155
  issue: 3
  year: 2025
  ident: 7810_CR40
  publication-title: Cluster Comput
  doi: 10.1007/s10586-024-04833-5
– volume: 73
  start-page: 334
  year: 2024
  ident: 7810_CR28
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2024.02.007
– volume: 172
  year: 2024
  ident: 7810_CR50
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2024.108064
– volume: 376
  year: 2021
  ident: 7810_CR47
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 623
  year: 2025
  ident: 7810_CR58
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2025.129414
– volume: 12
  start-page: 69
  issue: 1
  year: 2025
  ident: 7810_CR62
  publication-title: J Big Data
  doi: 10.1186/s40537-025-01116-7
– volume: 261
  year: 2025
  ident: 7810_CR39
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.125496
– volume: 346
  start-page: 1811
  issue: 2
  year: 2025
  ident: 7810_CR5
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-023-05228-2
– volume: 378
  year: 2025
  ident: 7810_CR6
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.124748
– volume: 13
  start-page: 713
  year: 2025
  ident: 7810_CR60
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2024.12.038
– volume: 93
  year: 2025
  ident: 7810_CR22
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2024.101836
– volume: 48
  start-page: 9991
  issue: 8
  year: 2023
  ident: 7810_CR31
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-022-07408-x
– volume: 219
  year: 2021
  ident: 7810_CR35
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.106859
– ident: 7810_CR53
– volume: 28
  start-page: 91
  issue: 2
  year: 2025
  ident: 7810_CR21
  publication-title: Cluster Comput
  doi: 10.1007/s10586-024-04750-7
– volume: 58
  start-page: 84
  issue: 3
  year: 2025
  ident: 7810_CR46
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-024-11023-7
– volume: 269
  year: 2025
  ident: 7810_CR11
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2025.126406
– volume: 392
  year: 2022
  ident: 7810_CR41
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114616
– volume: 259
  start-page: 1106
  year: 2025
  ident: 7810_CR7
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2025.04.064
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 7810_CR12
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 9
  start-page: 134022
  year: 2021
  ident: 7810_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3115026
– volume: 15
  start-page: 725
  issue: 2
  year: 2023
  ident: 7810_CR55
  publication-title: Int J Inf Technol
– volume: 15
  start-page: 8648
  issue: 1
  year: 2025
  ident: 7810_CR57
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-88054-9
– year: 2025
  ident: 7810_CR13
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2025.105815
– volume: 80
  start-page: 1
  issue: 10
  year: 2024
  ident: 7810_CR27
  publication-title: J Supercomput
  doi: 10.1007/s11227-024-06022-y
– volume: 468
  start-page: 117
  year: 2018
  ident: 7810_CR42
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.08.030
– volume: 80
  start-page: 35415
  issue: 28
  year: 2021
  ident: 7810_CR38
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-020-10304-x
– volume: 13
  start-page: 1
  issue: 6
  year: 2025
  ident: 7810_CR14
  publication-title: Int J Dyn Control
– volume: 102
  year: 2021
  ident: 7810_CR33
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107122
– volume: 607
  year: 2024
  ident: 7810_CR43
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.128427
– volume: 183
  year: 2021
  ident: 7810_CR52
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115353
– volume: 191
  year: 2020
  ident: 7810_CR44
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105190
– volume: 55
  start-page: 2551
  issue: 3
  year: 2023
  ident: 7810_CR30
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-022-10850-5
– volume: 324
  year: 2025
  ident: 7810_CR15
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2025.120704
– volume: 50
  start-page: 1025
  issue: 2
  year: 2025
  ident: 7810_CR2
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-024-09113-3
SSID ssj0004373
Score 2.3854656
Snippet Particle swarm optimizer (PSO) is a biomimetic optimization algorithm well-known for its potential in addressing diversified optimization problems (OP)....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1310
SubjectTerms Algorithms
Cognition
Compilers
Computer Science
Convergence
Datasets
Genetic algorithms
Interpreters
Methods
Mutation
Numerical analysis
Optimization algorithms
Particle swarm optimization
Physics
Processor Architectures
Programming Languages
Qubits (quantum computing)
Statistical analysis
Title Quantum-inspired adaptive mutation operator enabled PSO (QAMO-PSO) for parallel optimization and tailoring parameters of Kolmogorov–Arnold network
URI https://link.springer.com/article/10.1007/s11227-025-07810-w
https://www.proquest.com/docview/3257241640
Volume 81
WOSCitedRecordID wos001564873400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60evBifWK1yh48KLrQZpPd5ljEIoh9WBVvYZPdSCGP0qbt1f-gv9Bf4uw2ISh60FsgmyXMe5j5ZhA6Fb6j5765hHFflxkhZ225wiVCOEzYgkFKEZplE7zbbT0_u_0cFDYtut2LkqSx1CXYrWlZnOj1q3pATYMsVtEauLuWVsf74VOJhqSc5vCYn7_76oLKuPJbKdR4mE71f_-2hTbziBK3lyKwjVZUsoOqxbYGnCvvLnofzICKs5iMEl1dVxILKcba2uF4tizI43SsTNkdKwOpkrg_7OGzQfuuR-DpHEOEi_Ww8ChSERzORnEO48QikVg3o5p-PnMm1o02U5yG-DaN4vQlnaTzj9e39iRJI4mTZfv5HnrsXD9c3ZB8JwMJLG5lxGn5lEOKJJtM2Uq4TZ1cs0bAGjRknDrK8hX1DdyVgvMTtrKlwwJQdL9p8cCh-6iSpIk6QJiBPLhU0lAqYYcQ5HO4hemcWTK9_KyGLgo2eePl6A2vHLKsCe4BwT1DcG9RQ_WCk16uhlOPgkGCEAUkroYuC86Vr3-_7fBvx4_QhmWYryc61FElm8zUMVoP5tloOjkx4vkJAk7jrg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gV58i-szBw-KBnabNtkeF1EUdX2Lt5I2qSz0sexDr_4H_YX-EifZlqLoQW-FpqHMe5j5ZgB2ZOiZuW8-5SI0ZUbMWZu-9KmUHpeu5JhSxHbZhGi3m4-P_lUBCuuX3e5lSdJa6grs1nAcQc36VTOgpk5fxmHSRY9lGvlubh8qNCQTrIDH_PzdVxdUxZXfSqHWwxzP_e_f5mG2iChJayQCCzCms0WYK7c1kEJ5l-D9eohUHKa0k5nqulZEKtk11o6kw1FBnuRdbcvuRFtIlSJXt5dk97p1cUnxaY9ghEvMsPAk0QkeHnTSAsZJZKaIaUa1_Xz2TGoabfokj8lZnqT5U97Lnz9e31q9LE8UyUbt58twf3x0d3hCi50MNHKEM6BeM2QCUyTV4NrV0m-Y5JrXI15nMRfM006oWWjhrgydn3S1qzweoaKHDUdEHluBiSzP9CoQjvLgM8VipaUbY5Av8BZucmbFzfKzGuyXbAq6o9EbQTVk2RA8QIIHluDBSw02Sk4GhRr2A4YGCUMUlLgaHJScq17_ftva345vw_TJ3cV5cH7aPluHGccKgpnusAETg95Qb8JU9Dzo9HtbVlQ_Aban5pI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqCouPNoilqcPHFq1FrtxYm-OK2AFApZF0Ipb5MQOWimP1W4WrvwH-IX8EjxOokDVHipukTKxovHYM6OZ7xuAPRl6yPvmUy5CLDOanLXrS59K6XHpSm5SitgOmxCDQffmxh--QvHbbve6JFliGpClKSv2xyreb4BvHccRFEexIllNm95_gAUXhwZhvn71u0FGMsEqqMzfv3vrjpoY84-yqPU2_eX3_-cKLFWRJumVprEKczr7DMv1FAdSHeov8HQ5M9qdpXSUYdVdKyKVHOMtSNJZWagn-VjbcjzRFmqlyPDqgny77J1fUPP0nZjIlyCJeJLoxAgXo7SCdxKZKYJNqrbPz8qk2IAzJXlMTvMkzW_zSX73_PDYm2R5okhWtqV_hV_9o-uDY1rNaqCRI5yCet2QCZM6qQ7XrpZ-B5Nu3o54m8VcME87oWahhcEy4xSlq13l8chcAGHHEZHH1mA-yzO9DoQbO_GZYrHS0o1N8C_MKhxzacVxKFoLftRbFoxLSo6gIV9GhQdG4YFVeHDfgq16V4PqeE4DZi4qE7oYS2zBz3oXm9f_Xm3j_8R34dPwsB-cnQxON2HRsXaApA9bMF9MZnobPkZ3xWg62bFW-wJaE-92
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum-inspired+adaptive+mutation+operator+enabled+PSO+%28QAMO-PSO%29+for+parallel+optimization+and+tailoring+parameters+of+Kolmogorov%E2%80%93Arnold+network&rft.jtitle=The+Journal+of+supercomputing&rft.au=Agrawal%2C+Umang+Kumar&rft.au=Panda%2C+Nibedan&rft.date=2025-09-06&rft.pub=Springer+US&rft.eissn=1573-0484&rft.volume=81&rft.issue=14&rft_id=info:doi/10.1007%2Fs11227-025-07810-w&rft.externalDocID=10_1007_s11227_025_07810_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon