Star Death: a novel lightweight metaheuristic algorithm and its application for dynamic load-balancing in cluster computing
Optimization is a crucial principle in today's world, applied in various fields to increase profit and efficiency while reducing cost and time. However, solving optimization problems can be challenging, especially in dynamic environments where conditions are constantly changing. In the meantime...
Uloženo v:
| Vydáno v: | Cluster computing Ročník 28; číslo 9; s. 596 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1386-7857, 1573-7543 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Optimization is a crucial principle in today's world, applied in various fields to increase profit and efficiency while reducing cost and time. However, solving optimization problems can be challenging, especially in dynamic environments where conditions are constantly changing. In the meantime, metaheuristic methods are effective for solving large and complex optimization problems. Due to the presentation of several algorithms in the last two decades, each of which has high complexity and is difficult to understand, providing a lightweight algorithm has become a principle. This paper proposes a novel lightweight metaheuristic algorithm called the Star Death (SD) algorithm, which is inspired by the physical process of star death. The proposed algorithm aims to model the exact, regular, and optimal physical process of star death that can solve various problems. For this purpose, the SD algorithm employs an elite strategy that dynamically adjusts the range of exploration for better solutions. It also uses center-based sampling that emphasizes the center point's proximity to solutions, enhancing the optimizer's effectiveness. In this algorithm, the parameters are adjusted adaptively to enhance clarity and understanding of the parameter space. To prove application and robustness, the SD algorithm has been compared with 10 standard and popular metaheuristic algorithms. Based on this, 45 different benchmark test functions have been used. In addition, the algorithm has been tested and evaluated in high dimensions space. Also, it has been applied to 57 real-world CEC 2020 problems and six classic engineering problems. As a specific application, the SD algorithm is also used in solving the dynamic load-balancing problem. The results are generally indicative of the potential of the proposed algorithm to effectively solve complex optimization problems. The source codes of the SD algorithm are publicly available at
https://github.com/harifi/SD
. |
|---|---|
| AbstractList | Optimization is a crucial principle in today's world, applied in various fields to increase profit and efficiency while reducing cost and time. However, solving optimization problems can be challenging, especially in dynamic environments where conditions are constantly changing. In the meantime, metaheuristic methods are effective for solving large and complex optimization problems. Due to the presentation of several algorithms in the last two decades, each of which has high complexity and is difficult to understand, providing a lightweight algorithm has become a principle. This paper proposes a novel lightweight metaheuristic algorithm called the Star Death (SD) algorithm, which is inspired by the physical process of star death. The proposed algorithm aims to model the exact, regular, and optimal physical process of star death that can solve various problems. For this purpose, the SD algorithm employs an elite strategy that dynamically adjusts the range of exploration for better solutions. It also uses center-based sampling that emphasizes the center point's proximity to solutions, enhancing the optimizer's effectiveness. In this algorithm, the parameters are adjusted adaptively to enhance clarity and understanding of the parameter space. To prove application and robustness, the SD algorithm has been compared with 10 standard and popular metaheuristic algorithms. Based on this, 45 different benchmark test functions have been used. In addition, the algorithm has been tested and evaluated in high dimensions space. Also, it has been applied to 57 real-world CEC 2020 problems and six classic engineering problems. As a specific application, the SD algorithm is also used in solving the dynamic load-balancing problem. The results are generally indicative of the potential of the proposed algorithm to effectively solve complex optimization problems. The source codes of the SD algorithm are publicly available at
https://github.com/harifi/SD
. Optimization is a crucial principle in today's world, applied in various fields to increase profit and efficiency while reducing cost and time. However, solving optimization problems can be challenging, especially in dynamic environments where conditions are constantly changing. In the meantime, metaheuristic methods are effective for solving large and complex optimization problems. Due to the presentation of several algorithms in the last two decades, each of which has high complexity and is difficult to understand, providing a lightweight algorithm has become a principle. This paper proposes a novel lightweight metaheuristic algorithm called the Star Death (SD) algorithm, which is inspired by the physical process of star death. The proposed algorithm aims to model the exact, regular, and optimal physical process of star death that can solve various problems. For this purpose, the SD algorithm employs an elite strategy that dynamically adjusts the range of exploration for better solutions. It also uses center-based sampling that emphasizes the center point's proximity to solutions, enhancing the optimizer's effectiveness. In this algorithm, the parameters are adjusted adaptively to enhance clarity and understanding of the parameter space. To prove application and robustness, the SD algorithm has been compared with 10 standard and popular metaheuristic algorithms. Based on this, 45 different benchmark test functions have been used. In addition, the algorithm has been tested and evaluated in high dimensions space. Also, it has been applied to 57 real-world CEC 2020 problems and six classic engineering problems. As a specific application, the SD algorithm is also used in solving the dynamic load-balancing problem. The results are generally indicative of the potential of the proposed algorithm to effectively solve complex optimization problems. The source codes of the SD algorithm are publicly available at https://github.com/harifi/SD. |
| ArticleNumber | 596 |
| Author | Mirhosseini, Seyed Mohsen Eghbali, Reza Harifi, Sasan |
| Author_xml | – sequence: 1 givenname: Sasan orcidid: 0000-0002-6788-8222 surname: Harifi fullname: Harifi, Sasan email: s.harifi@kiau.ac.ir organization: Department of Computer Engineering, Karaj Branch, Islamic Azad University – sequence: 2 givenname: Reza orcidid: 0000-0002-4436-2594 surname: Eghbali fullname: Eghbali, Reza organization: Department of Computer Engineering, Karaj Branch, Islamic Azad University – sequence: 3 givenname: Seyed Mohsen orcidid: 0000-0002-2990-9598 surname: Mirhosseini fullname: Mirhosseini, Seyed Mohsen organization: Department of Computer Engineering, Karaj Branch, Islamic Azad University |
| BookMark | eNp9kE1P3DAQhi0EEp9_gJOlngO2s5M43BClpRJSD8DZmngnu0aJHWynCPHnMd1K3HqxrZnnfS09x2zfB0-MnUtxIYVoL5MUoJtKKKgEqAYq2GNHEtq6amFV75d3XdathvaQHaf0LIToWtUdsfeHjJF_J8zbK47chz808tFttvmVPk8-UcYtLdGl7CzHcROiy9uJo19zlxPHeR6dxeyC50OIfP3mcSrkGHBd9Tiit85vuPPcjkvKFLkN07zkMjxlBwOOic7-3Sfs6cft481ddf_756-b6_vKqlblCnQvettpiaonqxXgoBXpnrRohBwG2SiCBnrQel03pGkloCNcqaEvdN3WJ-zbrneO4WWhlM1zWKIvX5parUBCVxwWSu0oG0NKkQYzRzdhfDNSmE_JZifZFMnmr2QDJVTvQqnAfkPxq_o_qQ_j24Nb |
| Cites_doi | 10.1109/TEVC.2009.2011992 10.1146/annurev-astro-081811-125528 10.1007/s10489-022-03397-4 10.1177/003754970107600201 10.1109/CCBD.2016.050 10.1007/978-3-319-91086-4_5 10.1007/s10586-023-03982-3 10.1016/j.cor.2014.10.008 10.1016/j.ecoinf.2006.07.003 10.1016/j.advengsoft.2013.12.007 10.1016/j.eswa.2022.116924 10.1109/CEC.2007.4425083 10.1007/s10462-022-10173-w 10.1007/s10462-017-9605-z 10.1109/TEVC.2008.919004 10.22541/au.169333786.66092666/v1 10.1109/CEC48606.2020.9185583 10.21203/rs.3.rs-3866395/v1 10.1007/s12065-020-00451-3 10.1007/s00521-020-04832-8 10.1007/s12065-019-00212-x 10.1007/s11227-023-05790-3 10.1016/j.advengsoft.2015.01.010 10.1109/ICNN.1995.488968 10.1016/j.swevo.2018.02.013 10.1016/j.swevo.2015.07.002 10.1007/s00159-017-0101-x 10.1016/j.compstruc.2016.03.001 10.1023/A:1008202821328 10.1109/MCI.2006.329691 10.1007/s10586-020-03221-z 10.1016/j.asoc.2015.07.028 10.1016/j.cad.2010.12.015 10.4114/intartif.vol28iss75pp114-139 10.1016/j.swevo.2011.11.003 10.1016/j.advengsoft.2017.03.014 10.1016/j.eswa.2023.120905 10.1016/j.cnsns.2012.05.010 10.1016/j.knosys.2020.105709 10.1007/s12065-018-0172-2 10.1007/978-981-15-7571-6_10 10.1016/j.ins.2015.09.051 10.1287/ijoc.1.3.190 10.1016/j.camwa.2010.07.049 10.1155/2014/471209 10.1016/j.knosys.2014.07.025 10.1016/j.istruc.2023.04.102 10.1007/s10586-019-02950-0 10.1016/j.knosys.2022.108457 10.1007/s10462-023-10446-y 10.1002/spe.3025 10.1287/mnsc.44.2.262 10.1504/IJBIC.2009.022775 10.1016/j.advengsoft.2016.01.008 10.1016/j.matcom.2023.06.015 10.1016/j.physrep.2022.09.001 10.1007/s00521-013-1433-8 10.1016/j.procs.2015.12.291 10.1038/nature07990 10.1145/3377929.3398185 10.1109/JSYST.2019.2960088 10.1016/j.knosys.2015.07.006 10.1016/j.knosys.2019.105190 10.1504/IJHPCN.2020.110258 10.1088/1538-3873/ac32b1 10.1007/s10586-020-03177-0 10.3390/pr11051502 10.7551/mitpress/1090.001.0001 10.1109/SIS.2005.1501606 10.1145/3377929.3398186 10.1016/j.ins.2012.08.023 10.1109/TEVC.2002.1011539 10.1103/PhysRevD.111.045003 10.1504/IJBIC.2015.073178 10.1146/annurev.aa.05.090167.003035 10.1109/ICCKE50421.2020.9303653 10.1109/CEC.2018.8477769 10.1007/s10898-007-9149-x 10.1016/j.knosys.2015.12.022 10.1016/j.asoc.2015.10.047 10.1016/j.jnca.2017.04.007 10.1038/s41598-023-32465-z 10.1007/978-3-642-12538-6_6 10.1007/s10586-023-04221-5 10.1007/s00366-021-01554-w 10.1007/s10489-020-02105-4 10.1016/j.ins.2012.06.032 10.1007/978-3-642-32894-7_27 10.1016/j.swevo.2020.100693 10.3390/math10193466 10.1126/science.220.4598.671 10.1016/j.eswa.2020.113702 10.1016/j.jksuci.2020.10.016 10.11591/ijai.v8.i2.pp156-167 10.1016/j.eswa.2023.120069 10.1007/978-3-642-04944-6_14 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-025-05265-5 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_025_05265_5 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29B 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAIAL AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFFHD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- N2Q O9- OVD PHGZM PHGZT PQGLB RNI RZC RZE RZK TEORI JQ2 |
| ID | FETCH-LOGICAL-c272t-58b0bc981a2bec825af82e8be80601ff162e565b588d36e8e4059ea42fbc82373 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001560454300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Wed Nov 26 14:51:59 EST 2025 Sat Nov 29 07:26:43 EST 2025 Thu Sep 18 01:10:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Lightweight metaheuristic Metaheuristic High-dimensional tests Dynamic load-balancing Star Death (SD) algorithm Engineering problems Physics-based algorithm Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-58b0bc981a2bec825af82e8be80601ff162e565b588d36e8e4059ea42fbc82373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4436-2594 0000-0002-2990-9598 0000-0002-6788-8222 |
| PQID | 3245159100 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3245159100 crossref_primary_10_1007_s10586_025_05265_5 springer_journals_10_1007_s10586_025_05265_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | M Dorigo (5265_CR38) 2006; 1 R Oftadeh (5265_CR27) 2010; 60 G Sun (5265_CR33) 2016; 38 E Duman (5265_CR28) 2012; 217 S Mirjalili (5265_CR44) 2015; 83 5265_CR53 G Wu (5265_CR13) 2016; 329 5265_CR56 5265_CR55 EJ Ghomi (5265_CR95) 2017; 88 M Azizi (5265_CR48) 2023; 56 KB Kwitter (5265_CR84) 2022; 134 S Mirjalili (5265_CR72) 2016; 96 M Abdel-Basset (5265_CR52) 2023; 56 SS Rao (5265_CR1) 2019 5265_CR65 Q Askari (5265_CR61) 2020; 161 M Abdel-Basset (5265_CR76) 2022; 10 X Fu (5265_CR98) 2023; 26 E Cuevas (5265_CR31) 2015; 7 A Ullah (5265_CR100) 2020; 16 D Karaboga (5265_CR37) 2007; 39 D Amaro (5265_CR86) 2025; 111 A Kumar (5265_CR88) 2020; 56 A Daliri (5265_CR74) 2022; 52 N Chopra (5265_CR50) 2022; 198 H Shah-Hosseini (5265_CR25) 2009; 1 S Mirjalili (5265_CR43) 2015; 89 5265_CR79 M Azizi (5265_CR62) 2023; 13 M Han (5265_CR54) 2024; 239 B Pourghebleh (5265_CR94) 2020; 23 5265_CR87 5265_CR89 M Jain (5265_CR47) 2019; 44 D Simon (5265_CR57) 2008; 12 S Harifi (5265_CR92) 2025; 28 ZW Geem (5265_CR9) 2001; 76 P Hansen (5265_CR16) 2019 A Faramarzi (5265_CR75) 2020; 191 A Askarzadeh (5265_CR45) 2016; 169 5265_CR90 S Harifi (5265_CR35) 2019; 12 5265_CR91 YJ Zheng (5265_CR69) 2015; 55 E Balas (5265_CR17) 1998; 44 5265_CR97 S Ebneyousef (5265_CR93) 2023; 26 F Glover (5265_CR15) 1989; 1 5265_CR18 M Elsisi (5265_CR59) 2019; 12 JB Odili (5265_CR32) 2015; 76 I Iben Jr (5265_CR80) 1967; 5 P Civicioglu (5265_CR11) 2013; 219 5265_CR19 W Zhang (5265_CR36) 2023; 213 LN De Castro (5265_CR10) 2002; 6 SS Chandra (5265_CR66) 2021; 51 F Neri (5265_CR7) 2012; 2 A Ullah (5265_CR99) 2019; 8 B Mondal (5265_CR102) 2015; 6 S He (5265_CR26) 2009; 13 AR Mehrabian (5265_CR63) 2006; 1 5265_CR21 5265_CR20 5265_CR23 X Chen (5265_CR101) 2020; 14 5265_CR22 5265_CR24 F Ebadifard (5265_CR103) 2021; 24 S Kirkpatrick (5265_CR14) 1983; 220 RV Rao (5265_CR58) 2011; 43 R Rahmani (5265_CR30) 2014; 248 AA Abdelhamid (5265_CR67) 2023; 11 L Deng (5265_CR78) 2023; 225 H Shareef (5265_CR70) 2015; 36 R Storn (5265_CR8) 1997; 11 X Li (5265_CR29) 2014; 24 H Salimi (5265_CR12) 2015; 75 AH Gandomi (5265_CR41) 2012; 17 D Saumon (5265_CR85) 2022; 988 A Hatamlou (5265_CR68) 2013; 222 5265_CR34 5265_CR3 A Slowik (5265_CR5) 2020; 32 5265_CR39 S Harifi (5265_CR4) 2021; 14 M Braik (5265_CR51) 2022; 243 L Ma (5265_CR64) 2014; 2014 JH Holland (5265_CR6) 1992 Q Askari (5265_CR60) 2020; 195 S Mirjalili (5265_CR42) 2014; 69 H Abedinpourshotorban (5265_CR71) 2016; 26 R Kundu (5265_CR77) 2024; 80 A Kaveh (5265_CR73) 2017; 110 5265_CR40 S Mirjalili (5265_CR46) 2016; 95 5265_CR49 KL Luhman (5265_CR82) 2012; 50 V Bromm (5265_CR81) 2009; 459 K Hussain (5265_CR2) 2019; 52 S Hekker (5265_CR83) 2017; 25 A Pradhan (5265_CR96) 2022; 34 |
| References_xml | – volume: 13 start-page: 973 issue: 5 year: 2009 ident: 5265_CR26 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2011992 – volume: 50 start-page: 65 year: 2012 ident: 5265_CR82 publication-title: Ann. Rev. Astron. Astrophys. doi: 10.1146/annurev-astro-081811-125528 – volume: 52 start-page: 17990 issue: 15 year: 2022 ident: 5265_CR74 publication-title: Appl. Intell. doi: 10.1007/s10489-022-03397-4 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 5265_CR9 publication-title: SIMULATION doi: 10.1177/003754970107600201 – ident: 5265_CR97 doi: 10.1109/CCBD.2016.050 – ident: 5265_CR18 doi: 10.1007/978-3-319-91086-4_5 – volume: 26 start-page: 3187 issue: 5 year: 2023 ident: 5265_CR93 publication-title: Clust. Comput. doi: 10.1007/s10586-023-03982-3 – volume: 55 start-page: 1 year: 2015 ident: 5265_CR69 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2014.10.008 – volume: 1 start-page: 355 issue: 4 year: 2006 ident: 5265_CR63 publication-title: Eco. Inform. doi: 10.1016/j.ecoinf.2006.07.003 – volume: 69 start-page: 46 year: 2014 ident: 5265_CR42 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 198 year: 2022 ident: 5265_CR50 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116924 – ident: 5265_CR56 doi: 10.1109/CEC.2007.4425083 – volume: 56 start-page: 287 issue: 1 year: 2023 ident: 5265_CR48 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10173-w – volume: 52 start-page: 2191 year: 2019 ident: 5265_CR2 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9605-z – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 5265_CR57 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – ident: 5265_CR49 doi: 10.22541/au.169333786.66092666/v1 – ident: 5265_CR90 doi: 10.1109/CEC48606.2020.9185583 – ident: 5265_CR79 doi: 10.21203/rs.3.rs-3866395/v1 – volume: 14 start-page: 1743 year: 2021 ident: 5265_CR4 publication-title: Evol. Intel. doi: 10.1007/s12065-020-00451-3 – volume: 32 start-page: 12363 year: 2020 ident: 5265_CR5 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04832-8 – volume: 12 start-page: 211 year: 2019 ident: 5265_CR35 publication-title: Evol. Intel. doi: 10.1007/s12065-019-00212-x – volume: 80 start-page: 10746 issue: 8 year: 2024 ident: 5265_CR77 publication-title: J. Supercomput. doi: 10.1007/s11227-023-05790-3 – volume: 83 start-page: 80 year: 2015 ident: 5265_CR44 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – ident: 5265_CR23 doi: 10.1109/ICNN.1995.488968 – volume: 44 start-page: 148 year: 2019 ident: 5265_CR47 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.02.013 – volume: 26 start-page: 8 year: 2016 ident: 5265_CR71 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.07.002 – volume: 25 start-page: 1 year: 2017 ident: 5265_CR83 publication-title: Astron. Astrophys. Rev. doi: 10.1007/s00159-017-0101-x – volume: 169 start-page: 1 year: 2016 ident: 5265_CR45 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.03.001 – volume: 11 start-page: 341 year: 1997 ident: 5265_CR8 publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 5265_CR38 publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – volume: 26 start-page: 2479 issue: 5 year: 2023 ident: 5265_CR98 publication-title: Clust. Comput. doi: 10.1007/s10586-020-03221-z – volume: 36 start-page: 315 year: 2015 ident: 5265_CR70 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.028 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 5265_CR58 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 28 start-page: 114 issue: 75 year: 2025 ident: 5265_CR92 publication-title: Intel. Artif. doi: 10.4114/intartif.vol28iss75pp114-139 – volume: 2 start-page: 1 year: 2012 ident: 5265_CR7 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.11.003 – volume: 110 start-page: 69 year: 2017 ident: 5265_CR73 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.03.014 – ident: 5265_CR20 doi: 10.1016/j.eswa.2023.120905 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 5265_CR41 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.05.010 – ident: 5265_CR87 – volume: 195 year: 2020 ident: 5265_CR60 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105709 – volume: 12 start-page: 21 issue: 1 year: 2019 ident: 5265_CR59 publication-title: Evol. Intel. doi: 10.1007/s12065-018-0172-2 – volume: 219 start-page: 8121 issue: 15 year: 2013 ident: 5265_CR11 publication-title: Appl. Math. Comput. – ident: 5265_CR3 doi: 10.1007/978-981-15-7571-6_10 – volume: 329 start-page: 597 year: 2016 ident: 5265_CR13 publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.09.051 – volume: 239 year: 2024 ident: 5265_CR54 publication-title: Expert Syst. Appl. – volume: 1 start-page: 190 issue: 3 year: 1989 ident: 5265_CR15 publication-title: ORSA J. Comput. doi: 10.1287/ijoc.1.3.190 – volume: 60 start-page: 2087 issue: 7 year: 2010 ident: 5265_CR27 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.07.049 – volume: 2014 start-page: 471209 issue: 1 year: 2014 ident: 5265_CR64 publication-title: Math. Probl. Eng. doi: 10.1155/2014/471209 – volume: 75 start-page: 1 year: 2015 ident: 5265_CR12 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.07.025 – ident: 5265_CR21 doi: 10.1016/j.istruc.2023.04.102 – volume: 23 start-page: 641 issue: 2 year: 2020 ident: 5265_CR94 publication-title: Clust. Comput. doi: 10.1007/s10586-019-02950-0 – volume: 243 year: 2022 ident: 5265_CR51 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108457 – volume: 56 start-page: 11675 issue: 10 year: 2023 ident: 5265_CR52 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10446-y – ident: 5265_CR22 doi: 10.1002/spe.3025 – volume-title: Engineering optimization: theory and practice year: 2019 ident: 5265_CR1 – volume: 44 start-page: 262 issue: 2 year: 1998 ident: 5265_CR17 publication-title: Manage. Sci. doi: 10.1287/mnsc.44.2.262 – volume: 1 start-page: 71 issue: 1–2 year: 2009 ident: 5265_CR25 publication-title: Int. J. Bio-inspired Comput. doi: 10.1504/IJBIC.2009.022775 – volume: 248 start-page: 287 year: 2014 ident: 5265_CR30 publication-title: Appl. Math. Comput. – volume: 95 start-page: 51 year: 2016 ident: 5265_CR46 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 213 start-page: 394 year: 2023 ident: 5265_CR36 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2023.06.015 – start-page: 57 volume-title: Variable neighborhood search year: 2019 ident: 5265_CR16 – volume: 988 start-page: 1 year: 2022 ident: 5265_CR85 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2022.09.001 – volume: 6 start-page: 3307 issue: 4 year: 2015 ident: 5265_CR102 publication-title: Int. J. Comput. Sci. Inform. Technol. – volume: 24 start-page: 1867 year: 2014 ident: 5265_CR29 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1433-8 – volume: 76 start-page: 443 year: 2015 ident: 5265_CR32 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.12.291 – volume: 459 start-page: 49 issue: 7243 year: 2009 ident: 5265_CR81 publication-title: Nature doi: 10.1038/nature07990 – ident: 5265_CR91 doi: 10.1145/3377929.3398185 – volume: 14 start-page: 3117 issue: 3 year: 2020 ident: 5265_CR101 publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2019.2960088 – volume: 89 start-page: 228 year: 2015 ident: 5265_CR43 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 191 year: 2020 ident: 5265_CR75 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 16 start-page: 43 issue: 1 year: 2020 ident: 5265_CR100 publication-title: Int. J. High Perform. Comput. Networking doi: 10.1504/IJHPCN.2020.110258 – volume: 134 issue: 1032 year: 2022 ident: 5265_CR84 publication-title: Publ. Astron. Soc. Pac. doi: 10.1088/1538-3873/ac32b1 – volume: 24 start-page: 1075 year: 2021 ident: 5265_CR103 publication-title: Clust. Comput. doi: 10.1007/s10586-020-03177-0 – volume: 11 start-page: 1502 issue: 5 year: 2023 ident: 5265_CR67 publication-title: Processes doi: 10.3390/pr11051502 – volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence year: 1992 ident: 5265_CR6 doi: 10.7551/mitpress/1090.001.0001 – ident: 5265_CR24 doi: 10.1109/SIS.2005.1501606 – ident: 5265_CR89 doi: 10.1145/3377929.3398186 – volume: 222 start-page: 175 year: 2013 ident: 5265_CR68 publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.08.023 – volume: 6 start-page: 239 issue: 3 year: 2002 ident: 5265_CR10 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2002.1011539 – volume: 111 issue: 4 year: 2025 ident: 5265_CR86 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.111.045003 – volume: 7 start-page: 402 issue: 6 year: 2015 ident: 5265_CR31 publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2015.073178 – volume: 5 start-page: 571 issue: 1 year: 1967 ident: 5265_CR80 publication-title: Ann. Rev. Astron. Astrophys. doi: 10.1146/annurev.aa.05.090167.003035 – ident: 5265_CR19 doi: 10.1109/ICCKE50421.2020.9303653 – ident: 5265_CR34 doi: 10.1109/CEC.2018.8477769 – volume: 39 start-page: 459 year: 2007 ident: 5265_CR37 publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – volume: 96 start-page: 120 year: 2016 ident: 5265_CR72 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 38 start-page: 1025 year: 2016 ident: 5265_CR33 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.047 – volume: 88 start-page: 50 year: 2017 ident: 5265_CR95 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2017.04.007 – volume: 13 start-page: 5373 issue: 1 year: 2023 ident: 5265_CR62 publication-title: Sci. Rep. doi: 10.1038/s41598-023-32465-z – ident: 5265_CR40 doi: 10.1007/978-3-642-12538-6_6 – ident: 5265_CR53 doi: 10.1007/s10586-023-04221-5 – ident: 5265_CR55 doi: 10.1007/s00366-021-01554-w – volume: 51 start-page: 5965 issue: 8 year: 2021 ident: 5265_CR66 publication-title: Appl. Intell. doi: 10.1007/s10489-020-02105-4 – volume: 217 start-page: 65 year: 2012 ident: 5265_CR28 publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.06.032 – ident: 5265_CR65 doi: 10.1007/978-3-642-32894-7_27 – volume: 56 year: 2020 ident: 5265_CR88 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100693 – volume: 10 start-page: 3466 issue: 19 year: 2022 ident: 5265_CR76 publication-title: Mathematics doi: 10.3390/math10193466 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 5265_CR14 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 161 year: 2020 ident: 5265_CR61 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113702 – volume: 34 start-page: 3988 issue: 7 year: 2022 ident: 5265_CR96 publication-title: J. King Saud Univ.-Comput. Inform. Sci. doi: 10.1016/j.jksuci.2020.10.016 – volume: 8 start-page: 156 issue: 2 year: 2019 ident: 5265_CR99 publication-title: IAES Int. J. Artif. Intell. doi: 10.11591/ijai.v8.i2.pp156-167 – volume: 225 year: 2023 ident: 5265_CR78 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120069 – ident: 5265_CR39 doi: 10.1007/978-3-642-04944-6_14 |
| SSID | ssj0009729 |
| Score | 2.3636427 |
| Snippet | Optimization is a crucial principle in today's world, applied in various fields to increase profit and efficiency while reducing cost and time. However,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 596 |
| SubjectTerms | Algorithms Complexity Computer Communication Networks Computer Science Dynamic loads Effectiveness Evolution Genetic algorithms Heuristic Heuristic methods Load balancing Operating Systems Optimization Optimization techniques Parameters Problem solving Processor Architectures |
| Title | Star Death: a novel lightweight metaheuristic algorithm and its application for dynamic load-balancing in cluster computing |
| URI | https://link.springer.com/article/10.1007/s10586-025-05265-5 https://www.proquest.com/docview/3245159100 |
| Volume | 28 |
| WOSCitedRecordID | wos001560454300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQ0A1sYKlx48ZhQzzEVCFe6hY5sUMrpSlK0jLw5zk7iVIQDLAmjmXd-Xyfc3ffEXLKYk8LpczdxOfUlU6fCuaENBZSozdCj-tGttmENxyK0ci_r4rC8jrbvQ5J2pN6qdiNC5Mwy6nhKOGUr5I1dHfCmOPD40tDtevZ3mROH0d7gntVqczPc3x1Rw3G_BYWtd7mtv2_dW6RzQpdwmW5HbbJik53SLvu3ACVIe-SD8SYGVwb-HcBEtLZQieQmHv6u_1VClNdyLGelzTOIJPXWTYpxlOQqYJJkcNS3BsQ9oIqG9tDMpOKhiZdMsI1wySFKJkbLgaI7CLw4R55vr15urqjVRsGGjGPFZSLsBdGKGfJUOF4o5SxYFqEWhgulzh2BkwjLAy5EKo_0EIjBvS1dFkcRoYKp79PWuks1QcEEK2wnlS-9uUAkYP2FQI8PDP92FWxUG6HnNXaCN5Kto2g4VU2cg1QroGVa8A7pFsrLKgsLw8QIBqIhp90yHmtoOb177Md_m34EdlgRsc2r69LWkU218dkPVoUkzw7sTvyE9Bq29g |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SXBhPMVggA_cIBLNmjXlhngIBEyIl7hVaZOySaVDWwcH_jxO1mqA4ADXNo2sOIk_1_ZngB2eBkZqbX2TUDBfeU0muRezVCpD1ogsrp-4ZhNBuy0fH8PrsihsUGW7VyFJd1N_KnYT0ibMCmY5SgQTkzDtk8WyiXw3tw9jqt3A9SbzmjQ6kCIoS2V-nuOrORpjzG9hUWdtTmv_k3MB5kt0iYej7bAIEyZfglrVuQHLg7wM74Qx-3hs4d8BKsx7rybDzPrpb-5XKT6bQnXMcETjjCp76vW7RecZVa6xWwzwU9wbCfaiHjW2x6ynNIttumRCMmM3xyQbWi4GTJwQ9HAF7k9P7o7OWNmGgSU84AUTMt6Pk1B6ipPCyaNUqeRGxkZaLpc09VrcECyMhZS62TLSEAYMjfJ5GieWCqe5ClN5LzdrgIRW-L7SoQlVi5CDCTUBPLozw9TXqdR-HXYrbUQvI7aNaMyrbNc1onWN3LpGog6NSmFRefIGEQFEC9HokzrsVQoav_59tvW_Dd-G2bO7q8vo8rx9sQFz3Orb5fg1YKroD80mzCSvRXfQ33K78wMntN68 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5BmRAvjA0QhY3dw942a4sbNw5vaF01xFRV2g_1LXJim1ZK06pNywP_PGcnUbtpPEy8JrZ1urNz38V33wEccxsZqbWLTWLBQhV0mORByqxUhrwRedww880mosFAjkbxcKuK32e7N1eSVU2DY2kqyrO5tmdbhW9CuuRZwRxfiWDiJbwKXdMgF6_f3G9odyPfpyzo0OhIiqgum3l6jYeuaYM3H12Res_T3_1_md_B2xp14vdqm-zBC1Psw27T0QHrA_4e_hD2XGDPwcJvqLCYrU2OuYvff_tfqDg1pRqbVUXvjCr_NVtMyvEUVaFxUi5x6z4cCQ6jrhreYz5TmqUujTIj-XFSYJavHEcDZl4IevgB7vqXtxdXrG7PwDIe8ZIJmZ6nWSwDxWkjUKSprORGpkY6jhdrgy43BBdTIaXudI00hA1jo0Ju08xR5HQ-QquYFeYTIKEYfq50bGLVJURhYk3Aj76lsQ21lTpsw0ljmWResXAkG75lp9eE9Jp4vSaiDQeN8ZL6RC4TAo4OutGUNpw2xtq8_vdqn583_AheD3v95PrH4OcXeMOduX3q3wG0ysXKHMJOti4ny8VXv1H_AjgC56A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Star+Death%3A+a+novel+lightweight+metaheuristic+algorithm+and+its+application+for+dynamic+load-balancing+in+cluster+computing&rft.jtitle=Cluster+computing&rft.au=Harifi%2C+Sasan&rft.au=Eghbali%2C+Reza&rft.au=Mirhosseini%2C+Seyed+Mohsen&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=9&rft.spage=596&rft_id=info:doi/10.1007%2Fs10586-025-05265-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |