Mixture cure semiparametric additive hazard models under partly interval censoring — a penalized likelihood approach

Survival analysis can sometimes involve individuals who will not experience the event of interest, forming what is known as the “cured group”. Identifying such individuals is not always possible beforehand, as they provide only right-censored data. Ignoring the presence of the cured group can introd...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics and computing Ročník 35; číslo 4
Hlavní autoři: Li, Jinqing, Ma, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2025
Springer Nature B.V
Témata:
ISSN:0960-3174, 1573-1375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Survival analysis can sometimes involve individuals who will not experience the event of interest, forming what is known as the “cured group”. Identifying such individuals is not always possible beforehand, as they provide only right-censored data. Ignoring the presence of the cured group can introduce bias in the final model. This paper presents a method for estimating a semiparametric additive hazards model that accounts for the cured fraction. Unlike regression coefficients in a hazard ratio model, those in an additive hazard model measure hazard differences. The proposed method uses a primal-dual interior point algorithm to obtain constrained maximum penalized likelihood estimates of the model parameters, including the regression coefficients and the baseline hazard, subject to certain non-negativity constraints.
AbstractList Survival analysis can sometimes involve individuals who will not experience the event of interest, forming what is known as the “cured group”. Identifying such individuals is not always possible beforehand, as they provide only right-censored data. Ignoring the presence of the cured group can introduce bias in the final model. This paper presents a method for estimating a semiparametric additive hazards model that accounts for the cured fraction. Unlike regression coefficients in a hazard ratio model, those in an additive hazard model measure hazard differences. The proposed method uses a primal-dual interior point algorithm to obtain constrained maximum penalized likelihood estimates of the model parameters, including the regression coefficients and the baseline hazard, subject to certain non-negativity constraints.
ArticleNumber 92
Author Li, Jinqing
Ma, Jun
Author_xml – sequence: 1
  givenname: Jinqing
  surname: Li
  fullname: Li, Jinqing
  email: actuaryljq@uibe.edu.cn
  organization: Department of Statistics and Actuarial Studies, School of Insurance and Economics, University of International Business and Economics
– sequence: 2
  givenname: Jun
  surname: Ma
  fullname: Ma, Jun
  organization: Depart of Mathematics and Statistics, Macquarie University
BookMark eNp9kE1OwzAQhS0EEm3hAqwssQ6M7cRpl6jiTypiA2trGk-oS_6w05Z2xSE4ISchJUjs2MzM4r03M9-QHVZ1RYydCbgQAOllEEJKGYFMIgG6mzYHbCCSVEVCpckhG8BEQ6REGh-zYQhLACG0igds_eDe25Unnu1LoNI16LGk1ruMo7WudWviC9yht7ysLRWBrypLnne6tthyV7Xk11jwjKpQe1e98K-PT468oQoLtyPLC_dKhVvUteXYNL7GbHHCjnIsAp3-9hF7vrl-mt5Fs8fb--nVLMpkKtsoEVrQHFIJMkfIrVZWU6JI5pmCRFhEqeN5riYgrUzSFHI1z-OEJOjYIqEasfM-t1v7tqLQmmW98t1hwSgJajyOtRSdSvaqzNcheMpN412JfmsEmD1f0_M1HV_zw9dsOpPqTaHZf03-L_of1zfBD4NV
Cites_doi 10.1111/j.0006-341X.2000.00227.x
10.2307/2529885
10.1016/j.csda.2019.02.010
10.1111/j.2517-6161.1982.tb01203.x
10.1016/j.csda.2021.107365
10.1111/1467-9574.00175
10.1017/CBO9780511755453
10.1002/sim.7651
10.1137/1.9781611971453
10.1109/TSP.2007.907814
10.1007/978-1-4899-4473-3
10.1093/biomet/81.1.61
10.4310/SII.2015.v8.n3.a10
10.1214/aos/1176345782
10.1007/BF03178906
10.1111/j.1467-9868.2007.00589.x
10.1007/s10985-021-09515-7
10.1198/016214501753382273
10.1198/jasa.2009.tm08033
10.1002/sim.4780080803
10.1111/1467-9868.00398
10.1080/00949655.2021.1880587
10.1198/016214502388618861
10.1002/sim.9415
10.1214/aos/1015362185
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11222-025-10622-w
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10_1007_s11222_025_10622_w
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
AAYXX
ABRTQ
CITATION
JQ2
ID FETCH-LOGICAL-c272t-5161eb07202fa0fd63d6e53e2fc3051daa264bf3902d25770f3bf45e2064daea3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001487010200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Thu Oct 02 15:05:35 EDT 2025
Sat Nov 29 07:49:10 EST 2025
Wed Jun 18 01:10:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Interval censoring
Automatic smoothing
Mixture cure model
Additive hazards model
Maximum penalized likelihood estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-5161eb07202fa0fd63d6e53e2fc3051daa264bf3902d25770f3bf45e2064daea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3203884621
PQPubID 2043829
ParticipantIDs proquest_journals_3203884621
crossref_primary_10_1007_s11222_025_10622_w
springer_journals_10_1007_s11222_025_10622_w
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 10622_CR8
V Farewell (10622_CR5) 1982; 38
10622_CR9
OO Aalen (10622_CR1) 1989; 8
S Geman (10622_CR6) 1982; 10
JS Kim (10622_CR10) 2003; 65
DY Lin (10622_CR13) 1994; 81
J Fan (10622_CR4) 2002; 30
J Ma (10622_CR15) 2021; 18
M Othus (10622_CR17) 2009; 104
10622_CR19
T Moore (10622_CR16) 2008; 56
J Fan (10622_CR3) 2001; 96
D Ghosh (10622_CR7) 2001; 55
J Li (10622_CR11) 2019; 137
S Wang (10622_CR22) 2021; 27
Y Yu (10622_CR27) 2002; 97
S Zhao (10622_CR28) 2015; 8
T Louis (10622_CR14) 1982; 44
J Fan (10622_CR2) 1997; 6
A Webb (10622_CR24) 2022; 41
10622_CR21
10622_CR20
S Wang (10622_CR23) 2021; 91
J Xu (10622_CR26) 2018; 37
Y Li (10622_CR12) 2007; 69
Y Qi (10622_CR18) 2022
10622_CR25
References_xml – ident: 10622_CR21
  doi: 10.1111/j.0006-341X.2000.00227.x
– volume: 38
  start-page: 1041
  year: 1982
  ident: 10622_CR5
  publication-title: Biometrics
  doi: 10.2307/2529885
– volume: 137
  start-page: 170
  year: 2019
  ident: 10622_CR11
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2019.02.010
– volume: 44
  start-page: 226
  year: 1982
  ident: 10622_CR14
  publication-title: J R Stat. Soc. B
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– year: 2022
  ident: 10622_CR18
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2021.107365
– volume: 55
  start-page: 367
  issue: 3
  year: 2001
  ident: 10622_CR7
  publication-title: Stat. Neerlandica
  doi: 10.1111/1467-9574.00175
– ident: 10622_CR20
– ident: 10622_CR19
  doi: 10.1017/CBO9780511755453
– volume: 37
  start-page: 2238
  year: 2018
  ident: 10622_CR26
  publication-title: Stat. Med.
  doi: 10.1002/sim.7651
– ident: 10622_CR25
  doi: 10.1137/1.9781611971453
– volume: 56
  start-page: 895
  year: 2008
  ident: 10622_CR16
  publication-title: IEEE Trans. Sig. Proc
  doi: 10.1109/TSP.2007.907814
– ident: 10622_CR8
  doi: 10.1007/978-1-4899-4473-3
– volume: 81
  start-page: 61
  year: 1994
  ident: 10622_CR13
  publication-title: Biometrika
  doi: 10.1093/biomet/81.1.61
– volume: 8
  start-page: 367
  year: 2015
  ident: 10622_CR28
  publication-title: Stat. Interface.
  doi: 10.4310/SII.2015.v8.n3.a10
– volume: 10
  start-page: 401
  year: 1982
  ident: 10622_CR6
  publication-title: Annals Stat.
  doi: 10.1214/aos/1176345782
– volume: 6
  start-page: 131
  year: 1997
  ident: 10622_CR2
  publication-title: Antoniadis. J. Italian Stat. Assoc.
  doi: 10.1007/BF03178906
– volume: 69
  start-page: 285
  issue: 3
  year: 2007
  ident: 10622_CR12
  publication-title: J. Royal Stat. Soc.: Ser. B (Stat. Meth.)
  doi: 10.1111/j.1467-9868.2007.00589.x
– volume: 27
  start-page: 244
  year: 2021
  ident: 10622_CR22
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-021-09515-7
– volume: 96
  start-page: 1348
  year: 2001
  ident: 10622_CR3
  publication-title: J. Amer. Statist. Assoc
  doi: 10.1198/016214501753382273
– volume: 18
  start-page: 53
  issue: 2
  year: 2021
  ident: 10622_CR15
  publication-title: Int. J. Biostat.
– volume: 104
  start-page: 1241
  issue: 487
  year: 2009
  ident: 10622_CR17
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.tm08033
– volume: 8
  start-page: 907
  year: 1989
  ident: 10622_CR1
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780080803
– volume: 65
  start-page: 489
  issue: 2
  year: 2003
  ident: 10622_CR10
  publication-title: J. Royal Stat. Soc.: Ser. B (Stat. Methodol.)
  doi: 10.1111/1467-9868.00398
– ident: 10622_CR9
– volume: 91
  start-page: 2018
  year: 2021
  ident: 10622_CR23
  publication-title: J. Stat. Comput. Simulation
  doi: 10.1080/00949655.2021.1880587
– volume: 97
  start-page: 1042
  year: 2002
  ident: 10622_CR27
  publication-title: J. Am. Statist. Assoc.
  doi: 10.1198/016214502388618861
– volume: 41
  start-page: 3260
  year: 2022
  ident: 10622_CR24
  publication-title: Stat. Med.
  doi: 10.1002/sim.9415
– volume: 30
  start-page: 74
  issue: 1
  year: 2002
  ident: 10622_CR4
  publication-title: Annals Stati.
  doi: 10.1214/aos/1015362185
SSID ssj0011634
Score 2.4031696
Snippet Survival analysis can sometimes involve individuals who will not experience the event of interest, forming what is known as the “cured group”. Identifying such...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Artificial Intelligence
Censored data (mathematics)
Computer Science
Original Paper
Probability and Statistics in Computer Science
Regression coefficients
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Title Mixture cure semiparametric additive hazard models under partly interval censoring — a penalized likelihood approach
URI https://link.springer.com/article/10.1007/s11222-025-10622-w
https://www.proquest.com/docview/3203884621
Volume 35
WOSCitedRecordID wos001487010200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEB60eqgHq1WxWiUHb7qwzf7mKGLxYEX8Kb0taZLFxbaWbm21Jx_CJ_RJnKS7XRQ96GUJbAghk5n5wsx8A3DEYxYyTrtWqBi1XEVd1DnOrAC9m6B2KLnh2W5fBldXYafDrrOisDTPds9DksZSF8VuDfRllm6_is8YHE2XYQXdXajV8ea2vYgdIMIwpFGIzdHCBG5WKvPzGl_dUYExv4VFjbdpVv63zw1Yz9AlOZ1fh01YUoMqVPLODSRT5CqstRZsrWkVyhpxzgmbt2DSSl50VIEI_UlVP9Hs4H3deEsQnX2k7SN54DO8WsT00UmJLkQbEZw37r2SxGRR4i4EvpBNeh_5eHsnnAyVBv0zJUkveVS9RBMqk5zTfBvum-d3ZxdW1pzBEjSgY8tDqKi6dkBtGnM7lr4jfeU5isYCTUhDco5Qqxs7zKYSzUJgx043dj1FEQNJrrizA6XB00DtAnF81Qht4QnOdP9rxhSTPgo2Flwi3vBqcJzLKBrOOTiigm1Zn3aEpx2Z046mNajnYowyfUwjh2rWG9enjRqc5GIrfv--2t7fpu9DmWrJmwzBOpTGo2d1AKtiglIcHZp7-gk-6eVd
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEB60CurBalWsvzl404Xd7G-OIopiW0SreFvSJIuLbZVubbUnH8In9EmcpLsWRQ96WQIbQshMZr4wM98A7PGERYzTlhUpRi1PUQ_vHGdWiN5NUDuS3PBs39TCRiO6vWUXeVFYVmS7FyFJY6knxW4O-jJLt1_FZwyOhtMw46HH0ol8l1c3n7EDRBiGNAqxOVqY0MtLZX5e46s7mmDMb2FR421Oyv_b5xIs5uiSHI7VYRmmVLcC5aJzA8kvcgUW6p9srVkF5jXiHBM2r8Cgnj7rqAIR-pOpTqrZwTu68ZYgOvtI20dyx0eoWsT00cmILkTrEZzXb7-Q1GRR4i4EvpBNeh95f30jnDwqDfpHSpJ2eq_aqSZUJgWn-Spcnxw3j06tvDmDJWhI-5aPUFG17JDaNOF2IgNXBsp3FU0EmhBHco5Qq5W4zKYSzUJoJ24r8XxFEQNJrri7BqXuQ1etA3ED5US28AVnuv81Y4rJwGZRIrhEvOFXYb-QUfw45uCIJ2zL-rRjPO3YnHY8rMJWIcY4v49Z7FLNeuMF1KnCQSG2ye_fV9v42_RdmDtt1mtx7axxvgnzVGuByRbcglK_96S2YVYMUKK9HaOzHweX6EE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB61tKrCobQBRAq0e-itWLHXzz0iSgQCIqS2KDdrvQ9hEUKUmOepP6K_sL-EmY1NaFUOqBfLklcra2d25hvNzDcAn6UVmZC88DIjuBcZHuGdk8JL0bsp7mdaOp7tk8O0388GA3H8qIvfVbs3KclZTwOxNI2q7ljb7rzxLUC_5tEoVgxp8O36JbyKaGgQxevfTh7yCIg2HIEU4nS0NmlUt838e48_XdMcb_6VInWep7f0___8Dt7WqJNtz9TkPbwwozYsNRMdWH3B27B49MDiOm1Di5DojMh5Ga6OyhvKNjBFj6k5L4k1_JwGcilGVUlkN9mpvEOVY26-zpRRg9qE4bpqeMtKV12Jf6EwcnZlf-z3z19MsrGhYODOaDYsz8ywJKJl1nCdr8CP3u73nT2vHtrgKZ7yyosRQprCT7nPrfStTkKdmDg03Co0LYGWEiFYYUPhc43mIvVtWNgoNhyxkZZGhquwMLoYmTVgYWKCzFexkoLmYgthhE58kVklNeKQuANfGnnl4xk3Rz5nYabTzvG0c3fa-XUHNhqR5vU9neYhJzacKOFBB7YaEc4_P73bh-ct_wRvjr_28sP9_sE6tDgpgSsi3ICFanJpNuG1ukKBTj469b0H35PxJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixture+cure+semiparametric+additive+hazard+models+under+partly+interval+censoring+%E2%80%94+a+penalized+likelihood+approach&rft.jtitle=Statistics+and+computing&rft.au=Li%2C+Jinqing&rft.au=Ma%2C+Jun&rft.date=2025-08-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=35&rft.issue=4&rft_id=info:doi/10.1007%2Fs11222-025-10622-w&rft.externalDocID=10_1007_s11222_025_10622_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon