Mixture cure semiparametric additive hazard models under partly interval censoring — a penalized likelihood approach
Survival analysis can sometimes involve individuals who will not experience the event of interest, forming what is known as the “cured group”. Identifying such individuals is not always possible beforehand, as they provide only right-censored data. Ignoring the presence of the cured group can introd...
Uložené v:
| Vydané v: | Statistics and computing Ročník 35; číslo 4 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.08.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0960-3174, 1573-1375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Survival analysis can sometimes involve individuals who will not experience the event of interest, forming what is known as the “cured group”. Identifying such individuals is not always possible beforehand, as they provide only right-censored data. Ignoring the presence of the cured group can introduce bias in the final model. This paper presents a method for estimating a semiparametric additive hazards model that accounts for the cured fraction. Unlike regression coefficients in a hazard ratio model, those in an additive hazard model measure hazard differences. The proposed method uses a primal-dual interior point algorithm to obtain constrained maximum penalized likelihood estimates of the model parameters, including the regression coefficients and the baseline hazard, subject to certain non-negativity constraints. |
|---|---|
| AbstractList | Survival analysis can sometimes involve individuals who will not experience the event of interest, forming what is known as the “cured group”. Identifying such individuals is not always possible beforehand, as they provide only right-censored data. Ignoring the presence of the cured group can introduce bias in the final model. This paper presents a method for estimating a semiparametric additive hazards model that accounts for the cured fraction. Unlike regression coefficients in a hazard ratio model, those in an additive hazard model measure hazard differences. The proposed method uses a primal-dual interior point algorithm to obtain constrained maximum penalized likelihood estimates of the model parameters, including the regression coefficients and the baseline hazard, subject to certain non-negativity constraints. |
| ArticleNumber | 92 |
| Author | Li, Jinqing Ma, Jun |
| Author_xml | – sequence: 1 givenname: Jinqing surname: Li fullname: Li, Jinqing email: actuaryljq@uibe.edu.cn organization: Department of Statistics and Actuarial Studies, School of Insurance and Economics, University of International Business and Economics – sequence: 2 givenname: Jun surname: Ma fullname: Ma, Jun organization: Depart of Mathematics and Statistics, Macquarie University |
| BookMark | eNp9kE1OwzAQhS0EEm3hAqwssQ6M7cRpl6jiTypiA2trGk-oS_6w05Z2xSE4ISchJUjs2MzM4r03M9-QHVZ1RYydCbgQAOllEEJKGYFMIgG6mzYHbCCSVEVCpckhG8BEQ6REGh-zYQhLACG0igds_eDe25Unnu1LoNI16LGk1ruMo7WudWviC9yht7ysLRWBrypLnne6tthyV7Xk11jwjKpQe1e98K-PT468oQoLtyPLC_dKhVvUteXYNL7GbHHCjnIsAp3-9hF7vrl-mt5Fs8fb--nVLMpkKtsoEVrQHFIJMkfIrVZWU6JI5pmCRFhEqeN5riYgrUzSFHI1z-OEJOjYIqEasfM-t1v7tqLQmmW98t1hwSgJajyOtRSdSvaqzNcheMpN412JfmsEmD1f0_M1HV_zw9dsOpPqTaHZf03-L_of1zfBD4NV |
| Cites_doi | 10.1111/j.0006-341X.2000.00227.x 10.2307/2529885 10.1016/j.csda.2019.02.010 10.1111/j.2517-6161.1982.tb01203.x 10.1016/j.csda.2021.107365 10.1111/1467-9574.00175 10.1017/CBO9780511755453 10.1002/sim.7651 10.1137/1.9781611971453 10.1109/TSP.2007.907814 10.1007/978-1-4899-4473-3 10.1093/biomet/81.1.61 10.4310/SII.2015.v8.n3.a10 10.1214/aos/1176345782 10.1007/BF03178906 10.1111/j.1467-9868.2007.00589.x 10.1007/s10985-021-09515-7 10.1198/016214501753382273 10.1198/jasa.2009.tm08033 10.1002/sim.4780080803 10.1111/1467-9868.00398 10.1080/00949655.2021.1880587 10.1198/016214502388618861 10.1002/sim.9415 10.1214/aos/1015362185 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11222-025-10622-w |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1573-1375 |
| ExternalDocumentID | 10_1007_s11222_025_10622_w |
| GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AAYXX ABRTQ CITATION JQ2 |
| ID | FETCH-LOGICAL-c272t-5161eb07202fa0fd63d6e53e2fc3051daa264bf3902d25770f3bf45e2064daea3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001487010200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-3174 |
| IngestDate | Thu Oct 02 15:05:35 EDT 2025 Sat Nov 29 07:49:10 EST 2025 Wed Jun 18 01:10:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Interval censoring Automatic smoothing Mixture cure model Additive hazards model Maximum penalized likelihood estimation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-5161eb07202fa0fd63d6e53e2fc3051daa264bf3902d25770f3bf45e2064daea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3203884621 |
| PQPubID | 2043829 |
| ParticipantIDs | proquest_journals_3203884621 crossref_primary_10_1007_s11222_025_10622_w springer_journals_10_1007_s11222_025_10622_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Statistics and computing |
| PublicationTitleAbbrev | Stat Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 10622_CR8 V Farewell (10622_CR5) 1982; 38 10622_CR9 OO Aalen (10622_CR1) 1989; 8 S Geman (10622_CR6) 1982; 10 JS Kim (10622_CR10) 2003; 65 DY Lin (10622_CR13) 1994; 81 J Fan (10622_CR4) 2002; 30 J Ma (10622_CR15) 2021; 18 M Othus (10622_CR17) 2009; 104 10622_CR19 T Moore (10622_CR16) 2008; 56 J Fan (10622_CR3) 2001; 96 D Ghosh (10622_CR7) 2001; 55 J Li (10622_CR11) 2019; 137 S Wang (10622_CR22) 2021; 27 Y Yu (10622_CR27) 2002; 97 S Zhao (10622_CR28) 2015; 8 T Louis (10622_CR14) 1982; 44 J Fan (10622_CR2) 1997; 6 A Webb (10622_CR24) 2022; 41 10622_CR21 10622_CR20 S Wang (10622_CR23) 2021; 91 J Xu (10622_CR26) 2018; 37 Y Li (10622_CR12) 2007; 69 Y Qi (10622_CR18) 2022 10622_CR25 |
| References_xml | – ident: 10622_CR21 doi: 10.1111/j.0006-341X.2000.00227.x – volume: 38 start-page: 1041 year: 1982 ident: 10622_CR5 publication-title: Biometrics doi: 10.2307/2529885 – volume: 137 start-page: 170 year: 2019 ident: 10622_CR11 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2019.02.010 – volume: 44 start-page: 226 year: 1982 ident: 10622_CR14 publication-title: J R Stat. Soc. B doi: 10.1111/j.2517-6161.1982.tb01203.x – year: 2022 ident: 10622_CR18 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2021.107365 – volume: 55 start-page: 367 issue: 3 year: 2001 ident: 10622_CR7 publication-title: Stat. Neerlandica doi: 10.1111/1467-9574.00175 – ident: 10622_CR20 – ident: 10622_CR19 doi: 10.1017/CBO9780511755453 – volume: 37 start-page: 2238 year: 2018 ident: 10622_CR26 publication-title: Stat. Med. doi: 10.1002/sim.7651 – ident: 10622_CR25 doi: 10.1137/1.9781611971453 – volume: 56 start-page: 895 year: 2008 ident: 10622_CR16 publication-title: IEEE Trans. Sig. Proc doi: 10.1109/TSP.2007.907814 – ident: 10622_CR8 doi: 10.1007/978-1-4899-4473-3 – volume: 81 start-page: 61 year: 1994 ident: 10622_CR13 publication-title: Biometrika doi: 10.1093/biomet/81.1.61 – volume: 8 start-page: 367 year: 2015 ident: 10622_CR28 publication-title: Stat. Interface. doi: 10.4310/SII.2015.v8.n3.a10 – volume: 10 start-page: 401 year: 1982 ident: 10622_CR6 publication-title: Annals Stat. doi: 10.1214/aos/1176345782 – volume: 6 start-page: 131 year: 1997 ident: 10622_CR2 publication-title: Antoniadis. J. Italian Stat. Assoc. doi: 10.1007/BF03178906 – volume: 69 start-page: 285 issue: 3 year: 2007 ident: 10622_CR12 publication-title: J. Royal Stat. Soc.: Ser. B (Stat. Meth.) doi: 10.1111/j.1467-9868.2007.00589.x – volume: 27 start-page: 244 year: 2021 ident: 10622_CR22 publication-title: Lifetime Data Anal. doi: 10.1007/s10985-021-09515-7 – volume: 96 start-page: 1348 year: 2001 ident: 10622_CR3 publication-title: J. Amer. Statist. Assoc doi: 10.1198/016214501753382273 – volume: 18 start-page: 53 issue: 2 year: 2021 ident: 10622_CR15 publication-title: Int. J. Biostat. – volume: 104 start-page: 1241 issue: 487 year: 2009 ident: 10622_CR17 publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.tm08033 – volume: 8 start-page: 907 year: 1989 ident: 10622_CR1 publication-title: Stat. Med. doi: 10.1002/sim.4780080803 – volume: 65 start-page: 489 issue: 2 year: 2003 ident: 10622_CR10 publication-title: J. Royal Stat. Soc.: Ser. B (Stat. Methodol.) doi: 10.1111/1467-9868.00398 – ident: 10622_CR9 – volume: 91 start-page: 2018 year: 2021 ident: 10622_CR23 publication-title: J. Stat. Comput. Simulation doi: 10.1080/00949655.2021.1880587 – volume: 97 start-page: 1042 year: 2002 ident: 10622_CR27 publication-title: J. Am. Statist. Assoc. doi: 10.1198/016214502388618861 – volume: 41 start-page: 3260 year: 2022 ident: 10622_CR24 publication-title: Stat. Med. doi: 10.1002/sim.9415 – volume: 30 start-page: 74 issue: 1 year: 2002 ident: 10622_CR4 publication-title: Annals Stati. doi: 10.1214/aos/1015362185 |
| SSID | ssj0011634 |
| Score | 2.4031696 |
| Snippet | Survival analysis can sometimes involve individuals who will not experience the event of interest, forming what is known as the “cured group”. Identifying such... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Artificial Intelligence Censored data (mathematics) Computer Science Original Paper Probability and Statistics in Computer Science Regression coefficients Statistical Theory and Methods Statistics and Computing/Statistics Programs |
| Title | Mixture cure semiparametric additive hazard models under partly interval censoring — a penalized likelihood approach |
| URI | https://link.springer.com/article/10.1007/s11222-025-10622-w https://www.proquest.com/docview/3203884621 |
| Volume | 35 |
| WOSCitedRecordID | wos001487010200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsJAEJ4oesCDKGpE0ezBmzYpuy2FozESD2KMP4Rbs2x3YyMgoQjKyYfwCX0SZ5YWotGDXpom3W42Oz_7bWbmG4AjriSxZqF9d3TgkFI4iFqNY-pe1UTC49qS-rQug6urWrtdv06LwpIs2z0LSVpPvSh2q-BZ5lD7VbzG4NtkGVbwuKuROd7ctuaxA0QYljQKsTl6mMBLS2V-nuPrcbTAmN_Cova0aRT-t84NWE_RJTudqcMmLOl-EQpZ5waWGnIR1ppzttakCHlCnDPC5i0YN-MXiiowRY9E92JiB-9R4y3FKPuI_CN7kFNULWb76CSMCtGGDMeNuq8stlmUuAqFN2Sb3sc-3t6ZZANNoH-qI9aNH3U3JkJllnGab8N94_zu7MJJmzM4igd85PgIFXXHDbjLjXRNVBVRVftCc6PQhVQiKRFqdYyouzxCDQhcIzrG8zVHDBRJLcUO5PpPfb0LTAkjAhXVKq7WXiBNTXHX5wYBtaA__RIcZzIKBzMOjnDBtky7HeJuh3a3w0kJypkYw9Qek1BwYr3xqrxSgpNMbIvPv8-297fh-5DnJHmbIViG3Gj4rA9gVY1RisNDq6ef1TDlUA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIDEOPAaIwYAcuEGlLmnX7YgQCMQ2IV7iVmVpIiq2Ma1jPE78CH4hvwQ7azeB4ACXqlLTKIod-4tsfwbY5UoSaxae75YOHFIKB1GrcUzNq5hIeFxbUp-betBsVm9va-dpUViSZbtnIUlrqSfFbmX0ZQ61X8VrDL49TcOMhx6LEvkuLm_GsQNEGJY0CrE5WpjAS0tlfp7jqzuaYMxvYVHrbY4X_7fOJVhI0SU7GKnDMkzpbgEWs84NLD3IBZhvjNlakwLkCXGOCJtXYNiInymqwBQ9Et2JiR28Q423FKPsI7KP7E6-omox20cnYVSI1mc4btB-YbHNosRVKLwh2_Q-9vH2ziTraQL9rzpi7fhet2MiVGYZp_kqXB8fXR2eOGlzBkfxgA8cH6GibrkBd7mRrokqIqpoX2huFJqQciQlQq2WETWXR6gBgWtEy3i-5oiBIqmlWINc96Gr14EpYUSgomrZ1doLpKkq7vrcIKAW9KdfhL1MRmFvxMERTtiWabdD3O3Q7nb4VIRSJsYwPY9JKDix3ngVXi7Cfia2yeffZ9v42_AdmDu5atTD-mnzbBPynLTAZguWIDfoP-otmFVDlGh_2-rsJ51C6DQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60itSDj6pYn3vwpsF0N2nao6hFUYvgA29huw8M1lraatWTP8Jf6C9xZptYFT2IlxDIZllmZne_YWa-AdjgShJrFu7vhok8MgoPUav1bDUoWy0Cbhypz-VxVK9Xrq6qp5-q-F22exaSHNQ0EEtTq7fd1nZ7WPhWwnvNo1as6NLgW38UxgJqGkT--tnlRxwB0YYjkEKcjqdNFKRlMz_P8fVqGuLNbyFSd_PUpv-_5hmYSlEn2xmYySyMmFYBprOODizd4AWYPPlgce0WIE9IdEDkPAcPJ8kjRRuYokfX3CbEGn5LDbkUo6wkOjfZtXxGk2Ouv06XUYFah-G4XvOJJS67Eleh0HN2aX_s7eWVSdY25Aw8G82ayY1pJkS0zDKu83m4qO2f7x54adMGT_GI97wQIaRp-BH3uZW-1WWhyyYUhluFR0tJS4kQrGFF1ecaLSPyrWjYIDQcsZGWRooFyLXuWmYRmBJWREpXSr4xQSRtRXE_5BaBtqA_wyJsZvqK2wNujnjIwkzSjlHasZN23C_CSqbSON2n3VhwYsMJyrxUhK1MhcPPv8-29Lfh6zBxuleLjw_rR8uQ52QELolwBXK9zr1ZhXH1gArtrDnzfQdxIvEY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixture+cure+semiparametric+additive+hazard+models+under+partly+interval+censoring+%E2%80%94+a+penalized+likelihood+approach&rft.jtitle=Statistics+and+computing&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=35&rft.issue=4&rft_id=info:doi/10.1007%2Fs11222-025-10622-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |