The importance of artificial intelligence-based methods in precipitation modeling studies: a bibliometric analysis
Modeling climate parameters is essential for understanding climate variability, tracking changes over time, adapting to climate change, and assessing its impacts. Precipitation is especially important in climate science because it significantly influences ecosystems, agriculture, extreme weather eve...
Uloženo v:
| Vydáno v: | Theoretical and applied climatology Ročník 156; číslo 11; s. 602 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Vienna
Springer Vienna
01.11.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0177-798X, 1434-4483 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Modeling climate parameters is essential for understanding climate variability, tracking changes over time, adapting to climate change, and assessing its impacts. Precipitation is especially important in climate science because it significantly influences ecosystems, agriculture, extreme weather events, and the hydrological cycle. In this context, using Artificial Intelligence (AI), Artificial Neural Networks (ANN), Machine Learning (ML), and Deep Learning (DL) methods in precipitation modeling has become a key area of research. This study was conducted using the
“Clarivate Analytics Web of Science (WoS)”
database on September 17, 2024. A total of 112,721 articles that utilized AI methods in precipitation modeling from 1995 to 2023 were reviewed. These articles were ranked by citation count, leading to the selection of 238 papers for further analysis. The study focuses on three time periods: 1995–2004, 2005–2014, and 2015–2023. The 238 identified articles received a total of 42,351 citations, averaging 177.95 citations per article. The average citation count was highest in the first period (1995–2004) but declined in the 2015–2023 period. The journal with the most citations is “
Atmospheric Environment
,” and the most cited paper is by Gardner and Dorling (
1998
). The “
Journal of Hydrology
” has the highest H-index at 40. The most commonly used term in publications is “
machine learning
,” along with other important terms like “
precipitation
,” “
artificial neural networks
,
”
“
deep learning
,
” “rainfall
,
”
and “
rainfall-runoff
.” In conclusion, this study provides a bibliometric analysis of key topics related to precipitation modeling from 1995 to 2023, highlighting directions for future research. |
|---|---|
| AbstractList | Modeling climate parameters is essential for understanding climate variability, tracking changes over time, adapting to climate change, and assessing its impacts. Precipitation is especially important in climate science because it significantly influences ecosystems, agriculture, extreme weather events, and the hydrological cycle. In this context, using Artificial Intelligence (AI), Artificial Neural Networks (ANN), Machine Learning (ML), and Deep Learning (DL) methods in precipitation modeling has become a key area of research. This study was conducted using the “Clarivate Analytics Web of Science (WoS)” database on September 17, 2024. A total of 112,721 articles that utilized AI methods in precipitation modeling from 1995 to 2023 were reviewed. These articles were ranked by citation count, leading to the selection of 238 papers for further analysis. The study focuses on three time periods: 1995–2004, 2005–2014, and 2015–2023. The 238 identified articles received a total of 42,351 citations, averaging 177.95 citations per article. The average citation count was highest in the first period (1995–2004) but declined in the 2015–2023 period. The journal with the most citations is “Atmospheric Environment,” and the most cited paper is by Gardner and Dorling (1998). The “Journal of Hydrology” has the highest H-index at 40. The most commonly used term in publications is “machine learning,” along with other important terms like “precipitation,” “artificial neural networks,” “deep learning,” “rainfall,” and “rainfall-runoff.” In conclusion, this study provides a bibliometric analysis of key topics related to precipitation modeling from 1995 to 2023, highlighting directions for future research. Modeling climate parameters is essential for understanding climate variability, tracking changes over time, adapting to climate change, and assessing its impacts. Precipitation is especially important in climate science because it significantly influences ecosystems, agriculture, extreme weather events, and the hydrological cycle. In this context, using Artificial Intelligence (AI), Artificial Neural Networks (ANN), Machine Learning (ML), and Deep Learning (DL) methods in precipitation modeling has become a key area of research. This study was conducted using the “Clarivate Analytics Web of Science (WoS)” database on September 17, 2024. A total of 112,721 articles that utilized AI methods in precipitation modeling from 1995 to 2023 were reviewed. These articles were ranked by citation count, leading to the selection of 238 papers for further analysis. The study focuses on three time periods: 1995–2004, 2005–2014, and 2015–2023. The 238 identified articles received a total of 42,351 citations, averaging 177.95 citations per article. The average citation count was highest in the first period (1995–2004) but declined in the 2015–2023 period. The journal with the most citations is “ Atmospheric Environment ,” and the most cited paper is by Gardner and Dorling ( 1998 ). The “ Journal of Hydrology ” has the highest H-index at 40. The most commonly used term in publications is “ machine learning ,” along with other important terms like “ precipitation ,” “ artificial neural networks , ” “ deep learning , ” “rainfall , ” and “ rainfall-runoff .” In conclusion, this study provides a bibliometric analysis of key topics related to precipitation modeling from 1995 to 2023, highlighting directions for future research. |
| ArticleNumber | 602 |
| Author | Aydin, Olgu Kilar, Hatice |
| Author_xml | – sequence: 1 givenname: Olgu orcidid: 0000-0001-8220-6384 surname: Aydin fullname: Aydin, Olgu email: oaydin@ankara.edu.tr organization: Faculty of Language, History and Geography, Department of Geography, Ankara University – sequence: 2 givenname: Hatice orcidid: 0000-0002-2423-4712 surname: Kilar fullname: Kilar, Hatice organization: Faculty of Humanities and Social Sciences, Department of Geography, Sakarya University |
| BookMark | eNp9kEtLAzEQx4NUsK1-AU8Bz9E8tptdb1J8QcFLBW9hNpttU7bJmqSUfnujK3gThpnD_8Hwm6GJ884gdM3oLaNU3sW8aEEoXxC6qIQkxzM0ZYUoSFFUYoKmlElJZF19XKBZjDtKKS9LOUVhvTXY7gcfEjhtsO8whGQ7qy302Lpk-t5uTJZIA9G0eG_S1rcxS3gIRtvBJkjWO7z3remt2-CYDq018R4DbmzTW58jwWoMDvpTtPESnXfQR3P1e-fo_elxvXwhq7fn1-XDimgueSJFV0upKwF1l0eykutaSFHTRix002nN28o0ApoGoAStwbCSgq61rloGNRNzdDP2DsF_HkxMaucPIT8RleCl4LykNc8uPrp08DEG06kh2D2Ek2JUfbNVI1uV2aoftuqYQ2IMxWx2GxP-qv9JfQGLMoKk |
| Cites_doi | 10.1007/s10462-024-11040-6 10.1175/aies-d-22-0086.1 10.1016/j.joi.2017.08.007 10.1061/(ASCE)1084-0699(2000)5:2(124) 10.1007/s11192-017-2622-5 10.1029/91WR02985 10.3389/frai.2025.1517986 10.1126/science.144.3619.649 10.1175/jam2173.1 10.1007/s11356-019-07489-6 10.1029/98WR02577 10.31849/digitalzone.v14i2.16618 10.1088/1755-1315/945/1/012073 10.1016/j.atmosres.2005.10.015 10.1007/s00477-022-02204-3 10.3389/fsufs.2023.1158904 10.1016/j.heliyon.2023.e20297 10.1080/02626669609491511 10.1080/09715010.2018.1541766 10.1038/s41598-020-79148-7 10.1088/2632-2153/ad4b94 10.3390/eng3040040 10.3390/rs15112920 10.5194/hess-17-4379-2013 10.1501/Cogbil_0000000170 10.4324/9781003107774-4 10.1007/978-3-319-49520-0_3 10.1016/S1352-2310(97)00447-0 10.1175/1520-0450(1997)036%3C;1176:PEFRSI%3E;2.0.CO;2 10.1002/asi.23437 10.1007/s11269-023-03528-7 10.1080/02626669809492102 10.1007/s00477-015-1061-1 10.3390/w14020253 10.1016/j.jhydrol.2014.03.057 10.5281/zenodo.14709287 10.1029/2023GL107898 10.1016/j.jhydrol.2011.03.002 10.1162/qss_a_00018 10.1177/03091333010250010 10.1073/pnas.0707962104 10.1155/2014/279368 10.1016/j.rineng.2025.105774 10.1016/j.grets.2024.100104 10.1109/ACCESS.2020.2980977 10.1111/cobi.14054 10.1061/(ASCE)1084-0699(1999)4:3(232) 10.1016/j.cageo.2012.07.001 10.5194/gmd-17-4689-2024 10.1007/s11356-021-16319-7 10.1007/s11625-010-0108-y 10.3390/w15162979 10.1016/j.jbusres.2021.04.070 10.1093/reseval/rvu002 10.1007/s11192-024-04997-2 10.5565/rev/dag.629 10.1007/s10750-023-05270-y 10.1007/s11269-023-03476-2 10.1201/9781003546382-17 10.1016/j.advwatres.2020.103562 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7QH 7TG 7TN 7UA C1K F1W H96 KL. L.G |
| DOI | 10.1007/s00704-025-05837-w |
| DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1434-4483 |
| ExternalDocumentID | 10_1007_s00704_025_05837_w |
| GroupedDBID | -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BHPHI BKSAR BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAP EBLON EBS EDH EIOEI ESBYG ESX FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IJ- IKXTQ ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 Y6R YLTOR Z45 Z8Z ZMTXR ~02 ~EX -Y2 28- 2P1 2VQ 2XV 53G 5QI 88I 8FE 8FG 8FH AARHV AAYTO AAYXX ABJCF ABQSL ABULA ABUWG ACBXY ACUHS ADHKG AEBTG AEFIE AEKMD AEUYN AFEXP AFFHD AFGCZ AFKRA AGGDS AGQPQ AJBLW AZQEC B0M BANNL BBWZM BDATZ BGLVJ BPHCQ CAG CCPQU CITATION COF D1K DWQXO EAD EBD EJD EMK EPL FINBP FSGXE GNUQQ H13 IHE ITC K6- KOW L6V LK5 M2P M7R M7S N2Q NDZJH O9- P62 PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS Q2X R4E RNI RZK S26 S28 SCK SCLPG T16 UZXMN VFIZW WK6 XXG ZY4 ~8M 7QH 7TG 7TN 7UA AESKC C1K F1W H96 KL. L.G |
| ID | FETCH-LOGICAL-c272t-4f977c83a9fa9f7162c937390b35cbfcc2d8eb3abbaa6accae160ac9cc8d1a913 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001597694900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0177-798X |
| IngestDate | Wed Nov 05 06:29:18 EST 2025 Sat Nov 29 07:07:04 EST 2025 Wed Dec 10 10:37:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-4f977c83a9fa9f7162c937390b35cbfcc2d8eb3abbaa6accae160ac9cc8d1a913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2423-4712 0000-0001-8220-6384 |
| PQID | 3263226092 |
| PQPubID | 48318 |
| ParticipantIDs | proquest_journals_3263226092 crossref_primary_10_1007_s00704_025_05837_w springer_journals_10_1007_s00704_025_05837_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Theoretical and applied climatology |
| PublicationTitleAbbrev | Theor Appl Climatol |
| PublicationYear | 2025 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | L Parviz (5837_CR44) 2023; 37 SSM Ajibade (5837_CR3) 2023; 9 T Zhang (5837_CR57) 2021; 945 J Gao (5837_CR16) 2023; 850 5837_CR29 5837_CR27 D Argüeso (5837_CR7) 2013; 17 5837_CR25 L Huang (5837_CR24) 2020; 27 5837_CR20 5837_CR63 5837_CR62 5837_CR61 5837_CR60 5837_CR1 E Gómez–Déniz (5837_CR19) 2024; 129 N Khan (5837_CR31) 2020; 139 V Nourani (5837_CR41) 2014; 514 MW Gardner (5837_CR17) 1998; 32 OS Riza (5837_CR47) 2023; 14 E Garfield (5837_CR18) 1964; 144 O Aydın (5837_CR9) 2016; 14 DK Prajapat (5837_CR45) 2021; 27 J Birkmann (5837_CR11) 2010; 5 J Olcina (5837_CR42) 2020; 66 T Partal (5837_CR43) 2015; 29 S Sarker (5837_CR50) 2022; 3 N Donthu (5837_CR14) 2021; 133 SM Hundurkar (5837_CR26) 2021; 2021 5837_CR59 5837_CR58 5837_CR55 5837_CR54 5837_CR53 5837_CR51 Q Duan (5837_CR15) 1992; 28 L Bornmann (5837_CR12) 2014; 23 VL Boult (5837_CR13) 2023; 37 JE Hirsch (5837_CR21) 2007; 104 C Birkle (5837_CR10) 2020; 1 V Nourani (5837_CR40) 2011; 402 5837_CR48 K Li (5837_CR34) 2018; 115 5837_CR46 FAF Sham (5837_CR52) 2025; 27 MJ Molina (5837_CR38) 2023; 2 GA Afuye (5837_CR2) 2022; 29 MI Khan (5837_CR30) 2020; 8 J Zhang (5837_CR56) 2016; 67 O Kisi (5837_CR32) 2013; 51 M Aria (5837_CR8) 2017; 11 Y Hong (5837_CR22) 2004; 43 K Nishiyama (5837_CR39) 2007; 83 K Hsu (5837_CR23) 1995; 48 5837_CR37 5837_CR35 T Amnuaylojaroen (5837_CR5) 2025; 8 A Anshuka (5837_CR6) 2022; 36 B Liang (5837_CR36) 2023; 15 MA Saleh (5837_CR49) 2024; 2 V Jain (5837_CR28) 2023; 37 F Amato (5837_CR4) 2020; 10 G Lazoglou (5837_CR33) 2024; 17 |
| References_xml | – ident: 5837_CR48 doi: 10.1007/s10462-024-11040-6 – volume: 2 start-page: 1 year: 2023 ident: 5837_CR38 publication-title: Artif Intell Earth Syst doi: 10.1175/aies-d-22-0086.1 – volume: 11 start-page: 959 year: 2017 ident: 5837_CR8 publication-title: J Informetr doi: 10.1016/j.joi.2017.08.007 – ident: 5837_CR20 doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) – ident: 5837_CR25 – volume: 115 start-page: 1 year: 2018 ident: 5837_CR34 publication-title: Scientometrics doi: 10.1007/s11192-017-2622-5 – volume: 28 start-page: 1015 year: 1992 ident: 5837_CR15 publication-title: Water Resour Res doi: 10.1029/91WR02985 – volume: 8 start-page: 1 year: 2025 ident: 5837_CR5 publication-title: Front Artif Intell doi: 10.3389/frai.2025.1517986 – volume: 144 start-page: 649 year: 1964 ident: 5837_CR18 publication-title: Sci (80-) doi: 10.1126/science.144.3619.649 – volume: 43 start-page: 1834 year: 2004 ident: 5837_CR22 publication-title: J Appl Meteorol doi: 10.1175/jam2173.1 – volume: 27 start-page: 8740 year: 2020 ident: 5837_CR24 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-07489-6 – ident: 5837_CR59 doi: 10.1029/98WR02577 – volume: 14 start-page: 206 year: 2023 ident: 5837_CR47 publication-title: Digit Zo J Teknol Inf Dan Komun doi: 10.31849/digitalzone.v14i2.16618 – volume: 945 start-page: 1 year: 2021 ident: 5837_CR57 publication-title: IOP Conf Ser Earth Environ Sci doi: 10.1088/1755-1315/945/1/012073 – volume: 83 start-page: 185 year: 2007 ident: 5837_CR39 publication-title: Atmos Res doi: 10.1016/j.atmosres.2005.10.015 – volume: 36 start-page: 3467 year: 2022 ident: 5837_CR6 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-022-02204-3 – ident: 5837_CR29 doi: 10.3389/fsufs.2023.1158904 – volume: 9 start-page: e20297 year: 2023 ident: 5837_CR3 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e20297 – ident: 5837_CR61 doi: 10.1080/02626669609491511 – volume: 27 start-page: 289 year: 2021 ident: 5837_CR45 publication-title: ISH J Hydraul Eng doi: 10.1080/09715010.2018.1541766 – volume: 10 start-page: 1 year: 2020 ident: 5837_CR4 publication-title: Sci Rep doi: 10.1038/s41598-020-79148-7 – ident: 5837_CR27 doi: 10.1088/2632-2153/ad4b94 – volume: 3 start-page: 573 year: 2022 ident: 5837_CR50 publication-title: Eng doi: 10.3390/eng3040040 – volume: 15 start-page: 1 year: 2023 ident: 5837_CR36 publication-title: Remote Sens doi: 10.3390/rs15112920 – volume: 17 start-page: 4379 year: 2013 ident: 5837_CR7 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-17-4379-2013 – volume: 14 start-page: 1 year: 2016 ident: 5837_CR9 publication-title: Coğrafi Bilim Derg doi: 10.1501/Cogbil_0000000170 – ident: 5837_CR37 doi: 10.4324/9781003107774-4 – ident: 5837_CR1 doi: 10.1007/978-3-319-49520-0_3 – volume: 32 start-page: 2627 year: 1998 ident: 5837_CR17 publication-title: Atmos Environ doi: 10.1016/S1352-2310(97)00447-0 – ident: 5837_CR58 doi: 10.1175/1520-0450(1997)036%3C;1176:PEFRSI%3E;2.0.CO;2 – volume: 67 start-page: 967 year: 2016 ident: 5837_CR56 publication-title: J Assoc Inf Sci Technol doi: 10.1002/asi.23437 – volume: 37 start-page: 3833 year: 2023 ident: 5837_CR44 publication-title: Water Resour Manag doi: 10.1007/s11269-023-03528-7 – ident: 5837_CR62 doi: 10.1080/02626669809492102 – volume: 29 start-page: 1317 year: 2015 ident: 5837_CR43 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-015-1061-1 – ident: 5837_CR55 doi: 10.3390/w14020253 – volume: 2021 start-page: 3 year: 2021 ident: 5837_CR26 publication-title: Libr Philos Pract – volume: 514 start-page: 358 year: 2014 ident: 5837_CR41 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.03.057 – ident: 5837_CR46 doi: 10.5281/zenodo.14709287 – ident: 5837_CR35 doi: 10.1029/2023GL107898 – volume: 402 start-page: 41 year: 2011 ident: 5837_CR40 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.03.002 – volume: 1 start-page: 363 year: 2020 ident: 5837_CR10 publication-title: Quant Sci Stud doi: 10.1162/qss_a_00018 – ident: 5837_CR60 doi: 10.1177/03091333010250010 – volume: 104 start-page: 19193 year: 2007 ident: 5837_CR21 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0707962104 – ident: 5837_CR53 doi: 10.1155/2014/279368 – volume: 27 start-page: 105774 year: 2025 ident: 5837_CR52 publication-title: Results Eng doi: 10.1016/j.rineng.2025.105774 – volume: 48 start-page: 1 year: 1995 ident: 5837_CR23 publication-title: Water Resour Res – volume: 2 start-page: 100104 year: 2024 ident: 5837_CR49 publication-title: Green Technol Sustain doi: 10.1016/j.grets.2024.100104 – volume: 8 start-page: 52774 year: 2020 ident: 5837_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980977 – volume: 37 start-page: 1 year: 2023 ident: 5837_CR13 publication-title: Conserv Biol doi: 10.1111/cobi.14054 – ident: 5837_CR63 doi: 10.1061/(ASCE)1084-0699(1999)4:3(232) – volume: 51 start-page: 108 year: 2013 ident: 5837_CR32 publication-title: Comput Geosci doi: 10.1016/j.cageo.2012.07.001 – volume: 17 start-page: 4689 year: 2024 ident: 5837_CR33 publication-title: Geosci Model Dev doi: 10.5194/gmd-17-4689-2024 – volume: 29 start-page: 18578 year: 2022 ident: 5837_CR2 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-16319-7 – volume: 5 start-page: 171 year: 2010 ident: 5837_CR11 publication-title: Sustain Sci doi: 10.1007/s11625-010-0108-y – ident: 5837_CR54 doi: 10.3390/w15162979 – volume: 133 start-page: 285 year: 2021 ident: 5837_CR14 publication-title: J Bus Res doi: 10.1016/j.jbusres.2021.04.070 – volume: 23 start-page: 166 year: 2014 ident: 5837_CR12 publication-title: Res Eval doi: 10.1093/reseval/rvu002 – volume: 129 start-page: 2659 year: 2024 ident: 5837_CR19 publication-title: Scientometrics doi: 10.1007/s11192-024-04997-2 – volume: 66 start-page: 159 year: 2020 ident: 5837_CR42 publication-title: Doc d’Analisi Geogr doi: 10.5565/rev/dag.629 – volume: 850 start-page: 3441 year: 2023 ident: 5837_CR16 publication-title: Hydrobiologia doi: 10.1007/s10750-023-05270-y – volume: 37 start-page: 3013 year: 2023 ident: 5837_CR28 publication-title: Water Resour Manag doi: 10.1007/s11269-023-03476-2 – ident: 5837_CR51 doi: 10.1201/9781003546382-17 – volume: 139 start-page: 103562 year: 2020 ident: 5837_CR31 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2020.103562 |
| SSID | ssj0002667 |
| Score | 2.4334402 |
| Snippet | Modeling climate parameters is essential for understanding climate variability, tracking changes over time, adapting to climate change, and assessing its... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 602 |
| SubjectTerms | Accuracy Agricultural ecosystems Agricultural production Aquatic Pollution Artificial intelligence Artificial neural networks Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Bibliometrics Climate adaptation Climate change Climate change adaptation Climate models Climate science Climate variability Climatic analysis Climatology Datasets Decision making Deep learning Earth and Environmental Science Earth Sciences Extreme weather Hydrologic cycle Hydrological cycle Hydrology Learning algorithms Machine learning Modelling Neural networks Precipitation Rain Rainfall runoff Rainfall-runoff relationships Waste Water Technology Water Management Water Pollution Control Water resources management |
| Title | The importance of artificial intelligence-based methods in precipitation modeling studies: a bibliometric analysis |
| URI | https://link.springer.com/article/10.1007/s00704-025-05837-w https://www.proquest.com/docview/3263226092 |
| Volume | 156 |
| WOSCitedRecordID | wos001597694900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1434-4483 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODFb3E6JQfxooG1zfrhTYbDgw7xY-xWktcGCnMb7XT_vi9pu6noQaGXkhBC3mve7zX5_R7AmVIiESn63A-wQwlKgFxqHXBHaE8kqY-JFdIe3AX9fjgcRg8VKayob7vXR5J2p16Q3YwyjeCm_Gq7Q2kVn6_CGoW70BRseHwaLPZfCjklSToIeBCFw4oq8_MYX8PREmN-Oxa10aa39b95bsNmhS7ZdekOO7CSjneheU_AeJLb_-fsnHVHGaFU-7YHObkJy14tCCfzs4lmxpdKWQmWfdLr5CbeJaysOF1QE5saYYxppfHNbEkdmicrypuJV0wylamRofebKgBMVvIn-_DSu3nu3vKqDANHN3BnXGjCiBh6MtL0GMUpJEzjRW3ldVBpRDcJKSWXSknpS_KI1PHbEiPEMHFk5HgH0BhPxukhMKWFLxKJnjR8XNoslFQCHSEJdRhlvSZc1NaIp6XaRrzQVbbrGtO6xnZd43kTWrXB4urLK2LPCNBTkha5TbisDbRs_n20o791P4YN19jY0hJb0Jjlb-kJrOP7LCvyU-uRHz5x4Fk |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7oFPTib3E6NQfxooG1zZrWmwzHxG2IzrFbSdIWCnMb7XT_vi9pu6noQaGXkhBC3mve95p83wO4kJKFLFIudblqYILCFRVxzKnFYoeFkatCI6Q96PBezxsO_ceCFJaVt93LI0mzUy_IblqZhlFdfrXewLSKzldhjWHE0or5T8-Dxf6LIScnSXNOue8NC6rMz2N8DUdLjPntWNREm9b2_-a5A1sFuiS3uTvswko03oNqF4HxJDX_z8klaY4SRKnmbR9SdBOSvBoQjuYnk5hoX8plJUjySa-T6ngXkrzidIZNZKqFMaaFxjcxJXVwniTLbybeEEFkIkea3q-rABBRyJ8cwEvrrt9s06IMA1U2t2eUxYgRlecIP8ZHK04pxDSOX5dOQ8lYKTv0MCUXUgrhCvSIyHLrQvlKeaElfMs5hMp4Mo6OgMiYuSwUyhGaj4ubhRSSKYsJRB1aWa8KV6U1gmmuthEsdJXNuga4roFZ12BehVppsKD48rLA0QL0mKT5dhWuSwMtm38f7fhv3c9ho93vdoLOfe_hBDZtbW9DUaxBZZa-Raewrt5nSZaeGe_8AMus4z0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7oFPHib7E6NQfxosG1zfrDm0yH4hwDdexWkrSBwtzGOt2_70vablP0IEIvJSGEvNe87zX5vgdwJgSLWSI96vmyjgmKLylXyqc2Uy6LE0_GRki72_Lb7aDXCzsLLH5z2708ksw5DVqlaTC5GsXqakZ80yo1jOpSrLU6plh0ugwrTF-k1_n6c3e2F2P4yQnTvk_9MOgVtJmfx_gamuZ489sRqYk8zc3_z3kLNgrUSW5yN9mGpWSwA9YTAubh2PxXJ-ek0U8RvZq3XRij-5D0zYBzdAsyVET7WC43QdIFHU-q42BM8krUGTaRkRbMGBXa38SU2sE5kyy_sXhNOBGp6Gvav64OQHghi7IHr827l8Y9LcozUOn4zoQyhdhRBi4PFT5aiUoi1nHDmnDrUigpnTjAVJ0LwbnH0VMS26txGUoZxDYPbXcfKoPhIDkAIhTzWMylyzVPFzcRwQWTNuOIRrTingUXpWWiUa7CEc30ls26RriukVnXaGpBtTReVHyRWeRqYXpM3kLHgsvSWPPm30c7_Fv3U1jr3Daj1kP78QjWHW1uw1ysQmUyfk-OYVV-TNJsfGIc9RP2Ruwh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+importance+of+artificial+intelligence-based+methods+in+precipitation+modeling+studies%3A+a+bibliometric+analysis&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Aydin%2C+Olgu&rft.au=Kilar%2C+Hatice&rft.date=2025-11-01&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=156&rft.issue=11&rft_id=info:doi/10.1007%2Fs00704-025-05837-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00704_025_05837_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon |