The importance of artificial intelligence-based methods in precipitation modeling studies: a bibliometric analysis

Modeling climate parameters is essential for understanding climate variability, tracking changes over time, adapting to climate change, and assessing its impacts. Precipitation is especially important in climate science because it significantly influences ecosystems, agriculture, extreme weather eve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical and applied climatology Ročník 156; číslo 11; s. 602
Hlavní autoři: Aydin, Olgu, Kilar, Hatice
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.11.2025
Springer Nature B.V
Témata:
ISSN:0177-798X, 1434-4483
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Modeling climate parameters is essential for understanding climate variability, tracking changes over time, adapting to climate change, and assessing its impacts. Precipitation is especially important in climate science because it significantly influences ecosystems, agriculture, extreme weather events, and the hydrological cycle. In this context, using Artificial Intelligence (AI), Artificial Neural Networks (ANN), Machine Learning (ML), and Deep Learning (DL) methods in precipitation modeling has become a key area of research. This study was conducted using the “Clarivate Analytics Web of Science (WoS)” database on September 17, 2024. A total of 112,721 articles that utilized AI methods in precipitation modeling from 1995 to 2023 were reviewed. These articles were ranked by citation count, leading to the selection of 238 papers for further analysis. The study focuses on three time periods: 1995–2004, 2005–2014, and 2015–2023. The 238 identified articles received a total of 42,351 citations, averaging 177.95 citations per article. The average citation count was highest in the first period (1995–2004) but declined in the 2015–2023 period. The journal with the most citations is “ Atmospheric Environment ,” and the most cited paper is by Gardner and Dorling ( 1998 ). The “ Journal of Hydrology ” has the highest H-index at 40. The most commonly used term in publications is “ machine learning ,” along with other important terms like “ precipitation ,” “ artificial neural networks , ” “ deep learning , ” “rainfall , ” and “ rainfall-runoff .” In conclusion, this study provides a bibliometric analysis of key topics related to precipitation modeling from 1995 to 2023, highlighting directions for future research.
AbstractList Modeling climate parameters is essential for understanding climate variability, tracking changes over time, adapting to climate change, and assessing its impacts. Precipitation is especially important in climate science because it significantly influences ecosystems, agriculture, extreme weather events, and the hydrological cycle. In this context, using Artificial Intelligence (AI), Artificial Neural Networks (ANN), Machine Learning (ML), and Deep Learning (DL) methods in precipitation modeling has become a key area of research. This study was conducted using the “Clarivate Analytics Web of Science (WoS)” database on September 17, 2024. A total of 112,721 articles that utilized AI methods in precipitation modeling from 1995 to 2023 were reviewed. These articles were ranked by citation count, leading to the selection of 238 papers for further analysis. The study focuses on three time periods: 1995–2004, 2005–2014, and 2015–2023. The 238 identified articles received a total of 42,351 citations, averaging 177.95 citations per article. The average citation count was highest in the first period (1995–2004) but declined in the 2015–2023 period. The journal with the most citations is “Atmospheric Environment,” and the most cited paper is by Gardner and Dorling (1998). The “Journal of Hydrology” has the highest H-index at 40. The most commonly used term in publications is “machine learning,” along with other important terms like “precipitation,” “artificial neural networks,” “deep learning,” “rainfall,” and “rainfall-runoff.” In conclusion, this study provides a bibliometric analysis of key topics related to precipitation modeling from 1995 to 2023, highlighting directions for future research.
Modeling climate parameters is essential for understanding climate variability, tracking changes over time, adapting to climate change, and assessing its impacts. Precipitation is especially important in climate science because it significantly influences ecosystems, agriculture, extreme weather events, and the hydrological cycle. In this context, using Artificial Intelligence (AI), Artificial Neural Networks (ANN), Machine Learning (ML), and Deep Learning (DL) methods in precipitation modeling has become a key area of research. This study was conducted using the “Clarivate Analytics Web of Science (WoS)” database on September 17, 2024. A total of 112,721 articles that utilized AI methods in precipitation modeling from 1995 to 2023 were reviewed. These articles were ranked by citation count, leading to the selection of 238 papers for further analysis. The study focuses on three time periods: 1995–2004, 2005–2014, and 2015–2023. The 238 identified articles received a total of 42,351 citations, averaging 177.95 citations per article. The average citation count was highest in the first period (1995–2004) but declined in the 2015–2023 period. The journal with the most citations is “ Atmospheric Environment ,” and the most cited paper is by Gardner and Dorling ( 1998 ). The “ Journal of Hydrology ” has the highest H-index at 40. The most commonly used term in publications is “ machine learning ,” along with other important terms like “ precipitation ,” “ artificial neural networks , ” “ deep learning , ” “rainfall , ” and “ rainfall-runoff .” In conclusion, this study provides a bibliometric analysis of key topics related to precipitation modeling from 1995 to 2023, highlighting directions for future research.
ArticleNumber 602
Author Aydin, Olgu
Kilar, Hatice
Author_xml – sequence: 1
  givenname: Olgu
  orcidid: 0000-0001-8220-6384
  surname: Aydin
  fullname: Aydin, Olgu
  email: oaydin@ankara.edu.tr
  organization: Faculty of Language, History and Geography, Department of Geography, Ankara University
– sequence: 2
  givenname: Hatice
  orcidid: 0000-0002-2423-4712
  surname: Kilar
  fullname: Kilar, Hatice
  organization: Faculty of Humanities and Social Sciences, Department of Geography, Sakarya University
BookMark eNp9kEtLAzEQx4NUsK1-AU8Bz9E8tptdb1J8QcFLBW9hNpttU7bJmqSUfnujK3gThpnD_8Hwm6GJ884gdM3oLaNU3sW8aEEoXxC6qIQkxzM0ZYUoSFFUYoKmlElJZF19XKBZjDtKKS9LOUVhvTXY7gcfEjhtsO8whGQ7qy302Lpk-t5uTJZIA9G0eG_S1rcxS3gIRtvBJkjWO7z3remt2-CYDq018R4DbmzTW58jwWoMDvpTtPESnXfQR3P1e-fo_elxvXwhq7fn1-XDimgueSJFV0upKwF1l0eykutaSFHTRix002nN28o0ApoGoAStwbCSgq61rloGNRNzdDP2DsF_HkxMaucPIT8RleCl4LykNc8uPrp08DEG06kh2D2Ek2JUfbNVI1uV2aoftuqYQ2IMxWx2GxP-qv9JfQGLMoKk
Cites_doi 10.1007/s10462-024-11040-6
10.1175/aies-d-22-0086.1
10.1016/j.joi.2017.08.007
10.1061/(ASCE)1084-0699(2000)5:2(124)
10.1007/s11192-017-2622-5
10.1029/91WR02985
10.3389/frai.2025.1517986
10.1126/science.144.3619.649
10.1175/jam2173.1
10.1007/s11356-019-07489-6
10.1029/98WR02577
10.31849/digitalzone.v14i2.16618
10.1088/1755-1315/945/1/012073
10.1016/j.atmosres.2005.10.015
10.1007/s00477-022-02204-3
10.3389/fsufs.2023.1158904
10.1016/j.heliyon.2023.e20297
10.1080/02626669609491511
10.1080/09715010.2018.1541766
10.1038/s41598-020-79148-7
10.1088/2632-2153/ad4b94
10.3390/eng3040040
10.3390/rs15112920
10.5194/hess-17-4379-2013
10.1501/Cogbil_0000000170
10.4324/9781003107774-4
10.1007/978-3-319-49520-0_3
10.1016/S1352-2310(97)00447-0
10.1175/1520-0450(1997)036%3C;1176:PEFRSI%3E;2.0.CO;2
10.1002/asi.23437
10.1007/s11269-023-03528-7
10.1080/02626669809492102
10.1007/s00477-015-1061-1
10.3390/w14020253
10.1016/j.jhydrol.2014.03.057
10.5281/zenodo.14709287
10.1029/2023GL107898
10.1016/j.jhydrol.2011.03.002
10.1162/qss_a_00018
10.1177/03091333010250010
10.1073/pnas.0707962104
10.1155/2014/279368
10.1016/j.rineng.2025.105774
10.1016/j.grets.2024.100104
10.1109/ACCESS.2020.2980977
10.1111/cobi.14054
10.1061/(ASCE)1084-0699(1999)4:3(232)
10.1016/j.cageo.2012.07.001
10.5194/gmd-17-4689-2024
10.1007/s11356-021-16319-7
10.1007/s11625-010-0108-y
10.3390/w15162979
10.1016/j.jbusres.2021.04.070
10.1093/reseval/rvu002
10.1007/s11192-024-04997-2
10.5565/rev/dag.629
10.1007/s10750-023-05270-y
10.1007/s11269-023-03476-2
10.1201/9781003546382-17
10.1016/j.advwatres.2020.103562
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.
DBID AAYXX
CITATION
7QH
7TG
7TN
7UA
C1K
F1W
H96
KL.
L.G
DOI 10.1007/s00704-025-05837-w
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1434-4483
ExternalDocumentID 10_1007_s00704_025_05837_w
GroupedDBID -~X
.86
.VR
06D
0R~
0VY
123
199
1N0
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BHPHI
BKSAR
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAP
EBLON
EBS
EDH
EIOEI
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IJ-
IKXTQ
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
Y6R
YLTOR
Z45
Z8Z
ZMTXR
~02
~EX
-Y2
28-
2P1
2VQ
2XV
53G
5QI
88I
8FE
8FG
8FH
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ABUWG
ACBXY
ACUHS
ADHKG
AEBTG
AEFIE
AEKMD
AEUYN
AFEXP
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
AZQEC
B0M
BANNL
BBWZM
BDATZ
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
D1K
DWQXO
EAD
EBD
EJD
EMK
EPL
FINBP
FSGXE
GNUQQ
H13
IHE
ITC
K6-
KOW
L6V
LK5
M2P
M7R
M7S
N2Q
NDZJH
O9-
P62
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
Q2X
R4E
RNI
RZK
S26
S28
SCK
SCLPG
T16
UZXMN
VFIZW
WK6
XXG
ZY4
~8M
7QH
7TG
7TN
7UA
AESKC
C1K
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c272t-4f977c83a9fa9f7162c937390b35cbfcc2d8eb3abbaa6accae160ac9cc8d1a913
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001597694900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0177-798X
IngestDate Wed Nov 05 06:29:18 EST 2025
Sat Nov 29 07:07:04 EST 2025
Wed Dec 10 10:37:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-4f977c83a9fa9f7162c937390b35cbfcc2d8eb3abbaa6accae160ac9cc8d1a913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2423-4712
0000-0001-8220-6384
PQID 3263226092
PQPubID 48318
ParticipantIDs proquest_journals_3263226092
crossref_primary_10_1007_s00704_025_05837_w
springer_journals_10_1007_s00704_025_05837_w
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Theoretical and applied climatology
PublicationTitleAbbrev Theor Appl Climatol
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References L Parviz (5837_CR44) 2023; 37
SSM Ajibade (5837_CR3) 2023; 9
T Zhang (5837_CR57) 2021; 945
J Gao (5837_CR16) 2023; 850
5837_CR29
5837_CR27
D Argüeso (5837_CR7) 2013; 17
5837_CR25
L Huang (5837_CR24) 2020; 27
5837_CR20
5837_CR63
5837_CR62
5837_CR61
5837_CR60
5837_CR1
E Gómez–Déniz (5837_CR19) 2024; 129
N Khan (5837_CR31) 2020; 139
V Nourani (5837_CR41) 2014; 514
MW Gardner (5837_CR17) 1998; 32
OS Riza (5837_CR47) 2023; 14
E Garfield (5837_CR18) 1964; 144
O Aydın (5837_CR9) 2016; 14
DK Prajapat (5837_CR45) 2021; 27
J Birkmann (5837_CR11) 2010; 5
J Olcina (5837_CR42) 2020; 66
T Partal (5837_CR43) 2015; 29
S Sarker (5837_CR50) 2022; 3
N Donthu (5837_CR14) 2021; 133
SM Hundurkar (5837_CR26) 2021; 2021
5837_CR59
5837_CR58
5837_CR55
5837_CR54
5837_CR53
5837_CR51
Q Duan (5837_CR15) 1992; 28
L Bornmann (5837_CR12) 2014; 23
VL Boult (5837_CR13) 2023; 37
JE Hirsch (5837_CR21) 2007; 104
C Birkle (5837_CR10) 2020; 1
V Nourani (5837_CR40) 2011; 402
5837_CR48
K Li (5837_CR34) 2018; 115
5837_CR46
FAF Sham (5837_CR52) 2025; 27
MJ Molina (5837_CR38) 2023; 2
GA Afuye (5837_CR2) 2022; 29
MI Khan (5837_CR30) 2020; 8
J Zhang (5837_CR56) 2016; 67
O Kisi (5837_CR32) 2013; 51
M Aria (5837_CR8) 2017; 11
Y Hong (5837_CR22) 2004; 43
K Nishiyama (5837_CR39) 2007; 83
K Hsu (5837_CR23) 1995; 48
5837_CR37
5837_CR35
T Amnuaylojaroen (5837_CR5) 2025; 8
A Anshuka (5837_CR6) 2022; 36
B Liang (5837_CR36) 2023; 15
MA Saleh (5837_CR49) 2024; 2
V Jain (5837_CR28) 2023; 37
F Amato (5837_CR4) 2020; 10
G Lazoglou (5837_CR33) 2024; 17
References_xml – ident: 5837_CR48
  doi: 10.1007/s10462-024-11040-6
– volume: 2
  start-page: 1
  year: 2023
  ident: 5837_CR38
  publication-title: Artif Intell Earth Syst
  doi: 10.1175/aies-d-22-0086.1
– volume: 11
  start-page: 959
  year: 2017
  ident: 5837_CR8
  publication-title: J Informetr
  doi: 10.1016/j.joi.2017.08.007
– ident: 5837_CR20
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– ident: 5837_CR25
– volume: 115
  start-page: 1
  year: 2018
  ident: 5837_CR34
  publication-title: Scientometrics
  doi: 10.1007/s11192-017-2622-5
– volume: 28
  start-page: 1015
  year: 1992
  ident: 5837_CR15
  publication-title: Water Resour Res
  doi: 10.1029/91WR02985
– volume: 8
  start-page: 1
  year: 2025
  ident: 5837_CR5
  publication-title: Front Artif Intell
  doi: 10.3389/frai.2025.1517986
– volume: 144
  start-page: 649
  year: 1964
  ident: 5837_CR18
  publication-title: Sci (80-)
  doi: 10.1126/science.144.3619.649
– volume: 43
  start-page: 1834
  year: 2004
  ident: 5837_CR22
  publication-title: J Appl Meteorol
  doi: 10.1175/jam2173.1
– volume: 27
  start-page: 8740
  year: 2020
  ident: 5837_CR24
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-07489-6
– ident: 5837_CR59
  doi: 10.1029/98WR02577
– volume: 14
  start-page: 206
  year: 2023
  ident: 5837_CR47
  publication-title: Digit Zo J Teknol Inf Dan Komun
  doi: 10.31849/digitalzone.v14i2.16618
– volume: 945
  start-page: 1
  year: 2021
  ident: 5837_CR57
  publication-title: IOP Conf Ser Earth Environ Sci
  doi: 10.1088/1755-1315/945/1/012073
– volume: 83
  start-page: 185
  year: 2007
  ident: 5837_CR39
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2005.10.015
– volume: 36
  start-page: 3467
  year: 2022
  ident: 5837_CR6
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-022-02204-3
– ident: 5837_CR29
  doi: 10.3389/fsufs.2023.1158904
– volume: 9
  start-page: e20297
  year: 2023
  ident: 5837_CR3
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e20297
– ident: 5837_CR61
  doi: 10.1080/02626669609491511
– volume: 27
  start-page: 289
  year: 2021
  ident: 5837_CR45
  publication-title: ISH J Hydraul Eng
  doi: 10.1080/09715010.2018.1541766
– volume: 10
  start-page: 1
  year: 2020
  ident: 5837_CR4
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79148-7
– ident: 5837_CR27
  doi: 10.1088/2632-2153/ad4b94
– volume: 3
  start-page: 573
  year: 2022
  ident: 5837_CR50
  publication-title: Eng
  doi: 10.3390/eng3040040
– volume: 15
  start-page: 1
  year: 2023
  ident: 5837_CR36
  publication-title: Remote Sens
  doi: 10.3390/rs15112920
– volume: 17
  start-page: 4379
  year: 2013
  ident: 5837_CR7
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-17-4379-2013
– volume: 14
  start-page: 1
  year: 2016
  ident: 5837_CR9
  publication-title: Coğrafi Bilim Derg
  doi: 10.1501/Cogbil_0000000170
– ident: 5837_CR37
  doi: 10.4324/9781003107774-4
– ident: 5837_CR1
  doi: 10.1007/978-3-319-49520-0_3
– volume: 32
  start-page: 2627
  year: 1998
  ident: 5837_CR17
  publication-title: Atmos Environ
  doi: 10.1016/S1352-2310(97)00447-0
– ident: 5837_CR58
  doi: 10.1175/1520-0450(1997)036%3C;1176:PEFRSI%3E;2.0.CO;2
– volume: 67
  start-page: 967
  year: 2016
  ident: 5837_CR56
  publication-title: J Assoc Inf Sci Technol
  doi: 10.1002/asi.23437
– volume: 37
  start-page: 3833
  year: 2023
  ident: 5837_CR44
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-023-03528-7
– ident: 5837_CR62
  doi: 10.1080/02626669809492102
– volume: 29
  start-page: 1317
  year: 2015
  ident: 5837_CR43
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-015-1061-1
– ident: 5837_CR55
  doi: 10.3390/w14020253
– volume: 2021
  start-page: 3
  year: 2021
  ident: 5837_CR26
  publication-title: Libr Philos Pract
– volume: 514
  start-page: 358
  year: 2014
  ident: 5837_CR41
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.03.057
– ident: 5837_CR46
  doi: 10.5281/zenodo.14709287
– ident: 5837_CR35
  doi: 10.1029/2023GL107898
– volume: 402
  start-page: 41
  year: 2011
  ident: 5837_CR40
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.03.002
– volume: 1
  start-page: 363
  year: 2020
  ident: 5837_CR10
  publication-title: Quant Sci Stud
  doi: 10.1162/qss_a_00018
– ident: 5837_CR60
  doi: 10.1177/03091333010250010
– volume: 104
  start-page: 19193
  year: 2007
  ident: 5837_CR21
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0707962104
– ident: 5837_CR53
  doi: 10.1155/2014/279368
– volume: 27
  start-page: 105774
  year: 2025
  ident: 5837_CR52
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2025.105774
– volume: 48
  start-page: 1
  year: 1995
  ident: 5837_CR23
  publication-title: Water Resour Res
– volume: 2
  start-page: 100104
  year: 2024
  ident: 5837_CR49
  publication-title: Green Technol Sustain
  doi: 10.1016/j.grets.2024.100104
– volume: 8
  start-page: 52774
  year: 2020
  ident: 5837_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980977
– volume: 37
  start-page: 1
  year: 2023
  ident: 5837_CR13
  publication-title: Conserv Biol
  doi: 10.1111/cobi.14054
– ident: 5837_CR63
  doi: 10.1061/(ASCE)1084-0699(1999)4:3(232)
– volume: 51
  start-page: 108
  year: 2013
  ident: 5837_CR32
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2012.07.001
– volume: 17
  start-page: 4689
  year: 2024
  ident: 5837_CR33
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-17-4689-2024
– volume: 29
  start-page: 18578
  year: 2022
  ident: 5837_CR2
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-16319-7
– volume: 5
  start-page: 171
  year: 2010
  ident: 5837_CR11
  publication-title: Sustain Sci
  doi: 10.1007/s11625-010-0108-y
– ident: 5837_CR54
  doi: 10.3390/w15162979
– volume: 133
  start-page: 285
  year: 2021
  ident: 5837_CR14
  publication-title: J Bus Res
  doi: 10.1016/j.jbusres.2021.04.070
– volume: 23
  start-page: 166
  year: 2014
  ident: 5837_CR12
  publication-title: Res Eval
  doi: 10.1093/reseval/rvu002
– volume: 129
  start-page: 2659
  year: 2024
  ident: 5837_CR19
  publication-title: Scientometrics
  doi: 10.1007/s11192-024-04997-2
– volume: 66
  start-page: 159
  year: 2020
  ident: 5837_CR42
  publication-title: Doc d’Analisi Geogr
  doi: 10.5565/rev/dag.629
– volume: 850
  start-page: 3441
  year: 2023
  ident: 5837_CR16
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-023-05270-y
– volume: 37
  start-page: 3013
  year: 2023
  ident: 5837_CR28
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-023-03476-2
– ident: 5837_CR51
  doi: 10.1201/9781003546382-17
– volume: 139
  start-page: 103562
  year: 2020
  ident: 5837_CR31
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2020.103562
SSID ssj0002667
Score 2.4334402
Snippet Modeling climate parameters is essential for understanding climate variability, tracking changes over time, adapting to climate change, and assessing its...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 602
SubjectTerms Accuracy
Agricultural ecosystems
Agricultural production
Aquatic Pollution
Artificial intelligence
Artificial neural networks
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Bibliometrics
Climate adaptation
Climate change
Climate change adaptation
Climate models
Climate science
Climate variability
Climatic analysis
Climatology
Datasets
Decision making
Deep learning
Earth and Environmental Science
Earth Sciences
Extreme weather
Hydrologic cycle
Hydrological cycle
Hydrology
Learning algorithms
Machine learning
Modelling
Neural networks
Precipitation
Rain
Rainfall runoff
Rainfall-runoff relationships
Waste Water Technology
Water Management
Water Pollution Control
Water resources management
Title The importance of artificial intelligence-based methods in precipitation modeling studies: a bibliometric analysis
URI https://link.springer.com/article/10.1007/s00704-025-05837-w
https://www.proquest.com/docview/3263226092
Volume 156
WOSCitedRecordID wos001597694900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODFb3E6JQfxooG1zfrhTYbDgw7xY-xWktcGCnMb7XT_vi9pu6noQaGXkhBC3mve7zX5_R7AmVIiESn63A-wQwlKgFxqHXBHaE8kqY-JFdIe3AX9fjgcRg8VKayob7vXR5J2p16Q3YwyjeCm_Gq7Q2kVn6_CGoW70BRseHwaLPZfCjklSToIeBCFw4oq8_MYX8PREmN-Oxa10aa39b95bsNmhS7ZdekOO7CSjneheU_AeJLb_-fsnHVHGaFU-7YHObkJy14tCCfzs4lmxpdKWQmWfdLr5CbeJaysOF1QE5saYYxppfHNbEkdmicrypuJV0wylamRofebKgBMVvIn-_DSu3nu3vKqDANHN3BnXGjCiBh6MtL0GMUpJEzjRW3ldVBpRDcJKSWXSknpS_KI1PHbEiPEMHFk5HgH0BhPxukhMKWFLxKJnjR8XNoslFQCHSEJdRhlvSZc1NaIp6XaRrzQVbbrGtO6xnZd43kTWrXB4urLK2LPCNBTkha5TbisDbRs_n20o791P4YN19jY0hJb0Jjlb-kJrOP7LCvyU-uRHz5x4Fk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7oFPTib3E6NQfxooG1zZrWmwzHxG2IzrFbSdIWCnMb7XT_vi9pu6noQaGXkhBC3mve95p83wO4kJKFLFIudblqYILCFRVxzKnFYoeFkatCI6Q96PBezxsO_ceCFJaVt93LI0mzUy_IblqZhlFdfrXewLSKzldhjWHE0or5T8-Dxf6LIScnSXNOue8NC6rMz2N8DUdLjPntWNREm9b2_-a5A1sFuiS3uTvswko03oNqF4HxJDX_z8klaY4SRKnmbR9SdBOSvBoQjuYnk5hoX8plJUjySa-T6ngXkrzidIZNZKqFMaaFxjcxJXVwniTLbybeEEFkIkea3q-rABBRyJ8cwEvrrt9s06IMA1U2t2eUxYgRlecIP8ZHK04pxDSOX5dOQ8lYKTv0MCUXUgrhCvSIyHLrQvlKeaElfMs5hMp4Mo6OgMiYuSwUyhGaj4ubhRSSKYsJRB1aWa8KV6U1gmmuthEsdJXNuga4roFZ12BehVppsKD48rLA0QL0mKT5dhWuSwMtm38f7fhv3c9ho93vdoLOfe_hBDZtbW9DUaxBZZa-Raewrt5nSZaeGe_8AMus4z0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7oFPHib7E6NQfxosG1zfrDm0yH4hwDdexWkrSBwtzGOt2_70vablP0IEIvJSGEvNe87zX5vgdwJgSLWSI96vmyjgmKLylXyqc2Uy6LE0_GRki72_Lb7aDXCzsLLH5z2708ksw5DVqlaTC5GsXqakZ80yo1jOpSrLU6plh0ugwrTF-k1_n6c3e2F2P4yQnTvk_9MOgVtJmfx_gamuZ489sRqYk8zc3_z3kLNgrUSW5yN9mGpWSwA9YTAubh2PxXJ-ek0U8RvZq3XRij-5D0zYBzdAsyVET7WC43QdIFHU-q42BM8krUGTaRkRbMGBXa38SU2sE5kyy_sXhNOBGp6Gvav64OQHghi7IHr827l8Y9LcozUOn4zoQyhdhRBi4PFT5aiUoi1nHDmnDrUigpnTjAVJ0LwbnH0VMS26txGUoZxDYPbXcfKoPhIDkAIhTzWMylyzVPFzcRwQWTNuOIRrTingUXpWWiUa7CEc30ls26RriukVnXaGpBtTReVHyRWeRqYXpM3kLHgsvSWPPm30c7_Fv3U1jr3Daj1kP78QjWHW1uw1ysQmUyfk-OYVV-TNJsfGIc9RP2Ruwh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+importance+of+artificial+intelligence-based+methods+in+precipitation+modeling+studies%3A+a+bibliometric+analysis&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Aydin%2C+Olgu&rft.au=Kilar%2C+Hatice&rft.date=2025-11-01&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=156&rft.issue=11&rft_id=info:doi/10.1007%2Fs00704-025-05837-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00704_025_05837_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon