Optimality Conditions at Infinity for Nonsmooth Minimax Programming Problems with Some Applications

This paper is devoted to the study of optimality conditions at infinity in nonsmooth minimax programming problems and their applications. By means of the limiting subdifferential and the normal cone at infinity, we derive necessary and sufficient optimality conditions of the Karush–Kuhn–Tucker type...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 205; číslo 2; s. 32
Hlavní autoři: Van Tuyen, Nguyen, Bae, Kwan Deok, Kim, Do Sang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2025
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper is devoted to the study of optimality conditions at infinity in nonsmooth minimax programming problems and their applications. By means of the limiting subdifferential and the normal cone at infinity, we derive necessary and sufficient optimality conditions of the Karush–Kuhn–Tucker type for nonsmooth minimax programming problems with constraints. The obtained results are applied to nonsmooth vector optimization problems and robust minimax optimization ones.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-025-02652-1