A spectral condition for Hamilton cycles in tough bipartite graphs
Let G be a graph. The spectral radius of G is the largest eigenvalue of its adjacency matrix. For a non-complete bipartite graph G with parts X and Y , the bipartite toughness of G is defined as t B ( G ) = min | S | c ( G - S ) , where the minimum is taken over all proper subsets S ⊂ X (or S ⊂ Y )...
Uloženo v:
| Vydáno v: | Graphs and combinatorics Ročník 41; číslo 6; s. 116 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Tokyo
Springer Japan
01.12.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0911-0119, 1435-5914 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!