Two simplex-based approximate stochastic dynamic programming schemes for a real hydropower management problem

We present an approximate stochastic dynamic programming methodology for a real-world hydropower management problem, in which water must be released from reservoirs to produce electricity to power aluminum smelters over a planning horizon of a year (three-day time step). In each period, decisions ar...

Full description

Saved in:
Bibliographic Details
Published in:Annals of operations research Vol. 351; no. 1; pp. 333 - 364
Main Authors: Zephyr, Luckny, Lamond, Bernard F., Demeester, Kenjy, Latraverse, Marco
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2025
Springer Nature B.V
Subjects:
ISSN:0254-5330, 1572-9338
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present an approximate stochastic dynamic programming methodology for a real-world hydropower management problem, in which water must be released from reservoirs to produce electricity to power aluminum smelters over a planning horizon of a year (three-day time step). In each period, decisions are constrained by limits on the releases and the level of the four reservoirs, among others. The approach is a revisit of our previous work on simplicial approximate stochastic dynamic programming, in which the so-called cost-to-go or value functions are approximated over grid points chosen as vertices of simplices. The latter are constructed by first partitioning the reservoir level space into simplices and then iteratively subdividing existing simplices until a desired approximation error or a fixed number of grid points is reached. For each simplex, the approximation error is given by the difference between an upper and a lower bound. This scheme requires storing the list of created simplices in memory. In each iteration, the list is searched to find the existing simplex with the highest approximation error. This may be time-consuming as the number of existing simplices may be very large. In the new proposal, we avoid creating a long list of simplices by combining the original simplicial scheme with Monte Carlo simulation, similar to an exploration strategy in reinforcement learning. We benchmark the new method against its ancestor and an internal software package developed and used by an industrial partner, based on operational metrics and the concept of super-efficiency in data envelopment analysis. The Monte Carlo simplex-based scheme (the new method) outperforms the former method on all metrics considered. In addition, we compare the computational efficiency of both methods for different grid sizes. The average CPU time (over 15 replications) of the Monte Carlo simplicial approach varies between 78% and 98% of that of the simplicial method. As the grid sizes increase above 3,000 points, the simplicial method becomes intractable, in contrast to the Monte Carlo version, which confirms the advantage of the latter. Lastly, to further justify the Monte Carlo simplicial method, we create an artificial system by duplicating each component of the original system. In contrast to the new proposal, under the simplicial approach, the problem is tractable only for relatively modest size grids (up to 1,500 points), for which the average CPU time under the Monte Carlo approach varies between 2% and 5% of that of its simplicial counterpart.
AbstractList We present an approximate stochastic dynamic programming methodology for a real-world hydropower management problem, in which water must be released from reservoirs to produce electricity to power aluminum smelters over a planning horizon of a year (three-day time step). In each period, decisions are constrained by limits on the releases and the level of the four reservoirs, among others. The approach is a revisit of our previous work on simplicial approximate stochastic dynamic programming, in which the so-called cost-to-go or value functions are approximated over grid points chosen as vertices of simplices. The latter are constructed by first partitioning the reservoir level space into simplices and then iteratively subdividing existing simplices until a desired approximation error or a fixed number of grid points is reached. For each simplex, the approximation error is given by the difference between an upper and a lower bound. This scheme requires storing the list of created simplices in memory. In each iteration, the list is searched to find the existing simplex with the highest approximation error. This may be time-consuming as the number of existing simplices may be very large. In the new proposal, we avoid creating a long list of simplices by combining the original simplicial scheme with Monte Carlo simulation, similar to an exploration strategy in reinforcement learning. We benchmark the new method against its ancestor and an internal software package developed and used by an industrial partner, based on operational metrics and the concept of super-efficiency in data envelopment analysis. The Monte Carlo simplex-based scheme (the new method) outperforms the former method on all metrics considered. In addition, we compare the computational efficiency of both methods for different grid sizes. The average CPU time (over 15 replications) of the Monte Carlo simplicial approach varies between 78% and 98% of that of the simplicial method. As the grid sizes increase above 3,000 points, the simplicial method becomes intractable, in contrast to the Monte Carlo version, which confirms the advantage of the latter. Lastly, to further justify the Monte Carlo simplicial method, we create an artificial system by duplicating each component of the original system. In contrast to the new proposal, under the simplicial approach, the problem is tractable only for relatively modest size grids (up to 1,500 points), for which the average CPU time under the Monte Carlo approach varies between 2% and 5% of that of its simplicial counterpart.
Author Demeester, Kenjy
Latraverse, Marco
Zephyr, Luckny
Lamond, Bernard F.
Author_xml – sequence: 1
  givenname: Luckny
  orcidid: 0000-0002-7611-5192
  surname: Zephyr
  fullname: Zephyr, Luckny
  email: lzephyr@laurentian.ca
  organization: School of Business Administration/Barthi School of Engineering and Computer Science, Laurentian University
– sequence: 2
  givenname: Bernard F.
  surname: Lamond
  fullname: Lamond, Bernard F.
  organization: Département d’opérations et système de décisions, Faculté des sciences de l’administration, Université Laval
– sequence: 3
  givenname: Kenjy
  surname: Demeester
  fullname: Demeester, Kenjy
  organization: Technical Services, Rio Tinto
– sequence: 4
  givenname: Marco
  surname: Latraverse
  fullname: Latraverse, Marco
  organization: Technical Services, Rio Tinto
BookMark eNp9UM1LwzAcDTLBTf0HPAU8R5OmSdqjDL9g4GWeQ5b-2nU0TU06tv33Zlbw5ukd3hfvLdCs9z0gdMfoA6NUPUZGc1USmglCpZCM5BdozoTKSMl5MUPzxOREcE6v0CLGHaWUsULMkVsfPI6tGzo4ko2JUGEzDMEfW2dGwHH0dmvi2FpcnXrjEiayCca5tm9wtFtwEHHtAzY4gOnw9lQFP_gDBOxMb5rE9-PZtOnA3aDL2nQRbn_xGn2-PK-Xb2T18fq-fFoRm6lsJLmAoiwp57VVAEYyU5a1kKYAClQqkRe1gETZqrAmkxuq0nhlQQoquc2BX6P7KTf1fu0hjnrn96FPlZpnXLBMKiaSKptUNvgYA9R6CGl2OGlG9flWPd2q03n651adJxOfTDGJ-wbCX_Q_rm9zzH7T
Cites_doi 10.1007/s11269-020-02738-7
10.1029/95WR02172
10.1029/90WR02032
10.1007/s11269-014-0610-6
10.1016/0142-0615(89)90025-2
10.1007/BF01582895
10.1287/opre.41.3.484
10.1007/s10287-021-00387-8
10.1016/j.ejor.2011.10.056
10.1016/j.ejor.2017.03.050
10.1007/s10287-024-00517-y
10.1007/s10479-011-0973-5
10.1016/j.cor.2020.105032
10.1007/s12667-011-0024-y
10.1287/opre.47.1.38
10.1016/j.advwatres.2017.08.015
10.1016/j.cageo.2010.03.022
10.1016/j.ejor.2016.11.049
10.1145/3544489
10.1023/A:1017992615625
10.1016/j.jhydrol.2018.08.050
10.1007/s10479-019-03446-1
10.1061/(ASCE)WR.1943-5452.0001050
10.1016/j.ejor.2016.11.028
10.1029/WR021i006p00779
10.1007/s11081-008-9045-3
10.1007/s10287-015-0242-1
10.3390/w12071898
10.1287/mnsc.39.10.1261
10.1029/WR024i008p01345
10.1016/j.cam.2015.04.048
10.1139/cjce-2013-0370
10.1007/s11269-017-1893-1
10.1061/(ASCE)0733-9496(2004)130:2(93)
10.1002/9781118029176
10.3390/en14030625
10.1061/(ASCE)0733-9496(2007)133:1(4)
10.1061/(ASCE)IR.1943-4774.0001063
10.1002/hyp.5674
10.1016/j.eap.2019.01.005
10.1007/978-3-319-20430-7_5
10.1016/j.ejor.2018.08.001
10.1016/j.ijepes.2022.108319
10.1007/s00186-012-0406-5
10.3390/w10030340
10.1007/s00170-022-09864-z
10.1016/S0377-2217(98)00130-1
10.1016/j.ijepes.2019.105469
10.1007/s11269-010-9612-1
10.1029/WR026i003p00447
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7TA
7TB
8FD
FR3
JG9
JQ2
KR7
DOI 10.1007/s10479-025-06561-4
DatabaseName CrossRef
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Materials Business File
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1572-9338
EndPage 364
ExternalDocumentID 10_1007_s10479_025_06561_4
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBO
EBS
EBU
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
ICD
IEA
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
OAM
OVD
P19
P2P
P62
P9M
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
ZYFGU
~8M
~A9
~EX
AAYXX
AFFHD
CITATION
7TA
7TB
8FD
FR3
JG9
JQ2
KR7
ID FETCH-LOGICAL-c272t-45e899033fc7eea61a99f56a8e0e067548f5ec7ecd8ca26b074797ce65063c4e3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001462498100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-5330
IngestDate Wed Nov 05 14:49:02 EST 2025
Sat Nov 29 07:33:36 EST 2025
Fri Aug 01 03:41:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Approximate stochastic dynamic programming
Simplex
Stochastic dynamic programming
Hydropower
Monte Carlo simulation
Data envelopment analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-45e899033fc7eea61a99f56a8e0e067548f5ec7ecd8ca26b074797ce65063c4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7611-5192
PQID 3235126715
PQPubID 25585
PageCount 32
ParticipantIDs proquest_journals_3235126715
crossref_primary_10_1007_s10479_025_06561_4
springer_journals_10_1007_s10479_025_06561_4
PublicationCentury 2000
PublicationDate 20250800
2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Annals of operations research
PublicationTitleAbbrev Ann Oper Res
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References MV Pereira (6561_CR38) 1991; 52
6561_CR44
JL Morillo (6561_CR32) 2022; 142
A Al-Anazi (6561_CR1) 2010; 36
D Zhang (6561_CR53) 2018; 565
J Kelman (6561_CR25) 1990; 26
VC Chen (6561_CR9) 1999; 47
6561_CR49
F-J Chang (6561_CR7) 2005; 19
Q Desreumaux (6561_CR14) 2014; 41
A Magnani (6561_CR30) 2009; 10
X-B Li (6561_CR28) 1999; 115
T Cuvelier (6561_CR11) 2018; 32
R Munos (6561_CR33) 2002; 49
P Andersen (6561_CR2) 1993; 39
MV Pereira (6561_CR37) 1985; 21
G Halkos (6561_CR21) 2019; 62
C-M Ji (6561_CR23) 2014; 28
WB Powell (6561_CR40) 2011
6561_CR15
JA Tejada-Guibert (6561_CR45) 1995; 31
L Raso (6561_CR41) 2017; 143
G Uysal (6561_CR47) 2018; 10
P Côté (6561_CR10) 2019; 145
C Audet (6561_CR3) 2022; 48
L Zéphyr (6561_CR52) 2017; 262
MV Pereira (6561_CR36) 1989; 11
T Homem-de-Mello (6561_CR22) 2011; 2
M Bandarra (6561_CR4) 2021; 18
Y Cai (6561_CR6) 2013; 77
SA Johnson (6561_CR24) 1993; 41
6561_CR20
JF Bonnans (6561_CR5) 2012; 200
H-I Eum (6561_CR17) 2010; 24
JW Labadie (6561_CR27) 2004; 130
E Foufoula-Georgiou (6561_CR18) 1991; 27
X Tian (6561_CR46) 2017; 109
AF da Silva (6561_CR12) 2020; 287
E Foufoula-Georgiou (6561_CR19) 1988; 24
L Zéphyr (6561_CR51) 2015; 12
JL Morillo (6561_CR31) 2020; 115
6561_CR35
AB Philpott (6561_CR39) 2012; 218
Y-O Kim (6561_CR26) 2007; 133
S Séguin (6561_CR43) 2017; 259
AP dos Santos Rubem (6561_CR16) 2017; 260
KV SeethaRam (6561_CR42) 2021; 35
N Löhndorf (6561_CR29) 2019; 273
L Zephyr (6561_CR50) 2024; 21
Y Chen (6561_CR8) 2020; 124
X Wu (6561_CR48) 2021; 14
N Myo Lin (6561_CR34) 2020; 12
VL De Matos (6561_CR13) 2015; 290
References_xml – volume: 35
  start-page: 353
  issue: 1
  year: 2021
  ident: 6561_CR42
  publication-title: Water Resources Management
  doi: 10.1007/s11269-020-02738-7
– volume: 31
  start-page: 2571
  issue: 10
  year: 1995
  ident: 6561_CR45
  publication-title: Water Resources Research
  doi: 10.1029/95WR02172
– volume: 27
  start-page: 31
  issue: 1
  year: 1991
  ident: 6561_CR18
  publication-title: Water Resources Research
  doi: 10.1029/90WR02032
– volume: 28
  start-page: 2435
  year: 2014
  ident: 6561_CR23
  publication-title: Water Resources Management
  doi: 10.1007/s11269-014-0610-6
– volume: 11
  start-page: 161
  issue: 3
  year: 1989
  ident: 6561_CR36
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/0142-0615(89)90025-2
– volume: 52
  start-page: 359
  year: 1991
  ident: 6561_CR38
  publication-title: Mathematical Programming
  doi: 10.1007/BF01582895
– volume: 41
  start-page: 484
  issue: 3
  year: 1993
  ident: 6561_CR24
  publication-title: Operations Research
  doi: 10.1287/opre.41.3.484
– volume: 18
  start-page: 125
  year: 2021
  ident: 6561_CR4
  publication-title: Computational Management Science
  doi: 10.1007/s10287-021-00387-8
– volume: 218
  start-page: 470
  issue: 2
  year: 2012
  ident: 6561_CR39
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2011.10.056
– volume: 262
  start-page: 586
  issue: 2
  year: 2017
  ident: 6561_CR52
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.03.050
– volume: 21
  start-page: 1
  issue: 1
  year: 2024
  ident: 6561_CR50
  publication-title: Computational Management Science
  doi: 10.1007/s10287-024-00517-y
– volume: 200
  start-page: 199
  year: 2012
  ident: 6561_CR5
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-011-0973-5
– volume: 124
  year: 2020
  ident: 6561_CR8
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2020.105032
– volume: 2
  start-page: 1
  issue: 1
  year: 2011
  ident: 6561_CR22
  publication-title: Energy Systems
  doi: 10.1007/s12667-011-0024-y
– volume: 47
  start-page: 38
  issue: 1
  year: 1999
  ident: 6561_CR9
  publication-title: Operations Research
  doi: 10.1287/opre.47.1.38
– volume: 109
  start-page: 58
  year: 2017
  ident: 6561_CR46
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2017.08.015
– volume: 36
  start-page: 1494
  issue: 12
  year: 2010
  ident: 6561_CR1
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2010.03.022
– volume: 260
  start-page: 134
  issue: 1
  year: 2017
  ident: 6561_CR16
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.11.049
– volume: 48
  start-page: 1
  issue: 3
  year: 2022
  ident: 6561_CR3
  publication-title: ACM Transactions on Mathematical Software (TOMS)
  doi: 10.1145/3544489
– ident: 6561_CR35
– volume: 49
  start-page: 291
  year: 2002
  ident: 6561_CR33
  publication-title: Machine Learning
  doi: 10.1023/A:1017992615625
– volume: 565
  start-page: 720
  year: 2018
  ident: 6561_CR53
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2018.08.050
– volume: 287
  start-page: 127
  year: 2020
  ident: 6561_CR12
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-019-03446-1
– volume: 145
  start-page: 05019005
  issue: 4
  year: 2019
  ident: 6561_CR10
  publication-title: Journal of Water Resources Planning and Management
  doi: 10.1061/(ASCE)WR.1943-5452.0001050
– volume: 259
  start-page: 1156
  issue: 3
  year: 2017
  ident: 6561_CR43
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.11.028
– volume: 21
  start-page: 779
  issue: 6
  year: 1985
  ident: 6561_CR37
  publication-title: Water Resources Research
  doi: 10.1029/WR021i006p00779
– volume: 10
  start-page: 1
  year: 2009
  ident: 6561_CR30
  publication-title: Optimization and Engineering
  doi: 10.1007/s11081-008-9045-3
– volume: 12
  start-page: 539
  year: 2015
  ident: 6561_CR51
  publication-title: Computational Management Science
  doi: 10.1007/s10287-015-0242-1
– volume: 12
  start-page: 1898
  issue: 7
  year: 2020
  ident: 6561_CR34
  publication-title: Water
  doi: 10.3390/w12071898
– volume: 39
  start-page: 1261
  issue: 10
  year: 1993
  ident: 6561_CR2
  publication-title: Management Science
  doi: 10.1287/mnsc.39.10.1261
– volume: 24
  start-page: 1345
  issue: 8
  year: 1988
  ident: 6561_CR19
  publication-title: Water Resources Research
  doi: 10.1029/WR024i008p01345
– volume: 290
  start-page: 196
  year: 2015
  ident: 6561_CR13
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2015.04.048
– volume: 41
  start-page: 839
  issue: 9
  year: 2014
  ident: 6561_CR14
  publication-title: Canadian Journal of Civil Engineering
  doi: 10.1139/cjce-2013-0370
– ident: 6561_CR44
– volume: 32
  start-page: 1599
  year: 2018
  ident: 6561_CR11
  publication-title: Water Resources Management
  doi: 10.1007/s11269-017-1893-1
– volume: 130
  start-page: 93
  issue: 2
  year: 2004
  ident: 6561_CR27
  publication-title: Journal of water Resources Planning and Management
  doi: 10.1061/(ASCE)0733-9496(2004)130:2(93)
– volume-title: Approximate Dynamic Programming: Solving the Curses of Dimensionality
  year: 2011
  ident: 6561_CR40
  doi: 10.1002/9781118029176
– volume: 14
  start-page: 625
  issue: 3
  year: 2021
  ident: 6561_CR48
  publication-title: Energies
  doi: 10.3390/en14030625
– volume: 133
  start-page: 4
  issue: 1
  year: 2007
  ident: 6561_CR26
  publication-title: Journal of Water Resources Planning and Management
  doi: 10.1061/(ASCE)0733-9496(2007)133:1(4)
– volume: 143
  start-page: 4016002
  issue: 3
  year: 2017
  ident: 6561_CR41
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)IR.1943-4774.0001063
– volume: 19
  start-page: 2277
  issue: 11
  year: 2005
  ident: 6561_CR7
  publication-title: Hydrological Processes: An International Journal
  doi: 10.1002/hyp.5674
– volume: 62
  start-page: 97
  year: 2019
  ident: 6561_CR21
  publication-title: Economic Analysis and Policy
  doi: 10.1016/j.eap.2019.01.005
– ident: 6561_CR49
  doi: 10.1007/978-3-319-20430-7_5
– ident: 6561_CR20
– volume: 273
  start-page: 650
  issue: 2
  year: 2019
  ident: 6561_CR29
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.08.001
– volume: 142
  year: 2022
  ident: 6561_CR32
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2022.108319
– volume: 77
  start-page: 407
  year: 2013
  ident: 6561_CR6
  publication-title: Mathematical Methods of Operations Research
  doi: 10.1007/s00186-012-0406-5
– volume: 10
  start-page: 340
  issue: 3
  year: 2018
  ident: 6561_CR47
  publication-title: Water
  doi: 10.3390/w10030340
– ident: 6561_CR15
  doi: 10.1007/s00170-022-09864-z
– volume: 115
  start-page: 507
  issue: 3
  year: 1999
  ident: 6561_CR28
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(98)00130-1
– volume: 115
  year: 2020
  ident: 6561_CR31
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2019.105469
– volume: 24
  start-page: 3397
  year: 2010
  ident: 6561_CR17
  publication-title: Water Resources Management
  doi: 10.1007/s11269-010-9612-1
– volume: 26
  start-page: 447
  issue: 3
  year: 1990
  ident: 6561_CR25
  publication-title: Water Resources Research
  doi: 10.1029/WR026i003p00447
SSID ssj0001185
Score 2.441136
Snippet We present an approximate stochastic dynamic programming methodology for a real-world hydropower management problem, in which water must be released from...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 333
SubjectTerms Algorithms
Apexes
Approximation
Artificial intelligence
Business and Management
Combinatorics
Decomposition
Dynamic programming
Electricity
Errors
Hydroelectric power
Hydrology
Lower bounds
Monte Carlo simulation
Operations Research/Decision Theory
Original Research
Reservoirs
Smelters
Theory of Computation
Water
Water shortages
Title Two simplex-based approximate stochastic dynamic programming schemes for a real hydropower management problem
URI https://link.springer.com/article/10.1007/s10479-025-06561-4
https://www.proquest.com/docview/3235126715
Volume 351
WOSCitedRecordID wos001462498100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Online Journals
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5RNEYPoqgRRdODN20CbbduR2MknohRNNyW0r0FEgHDUPC_93VsgEYPeu6vpa_t-976-n0AF5ZAsm5YwVFITQGKQh52leBGycAEKGws40xsQrdaQacT3uePwtIi2724ksxO6pXHbkqH3Mmvktv0KfJZhw1yd4ETbHh4fF6cvwSZs8RFCn24y53Mn8r83MdXd7TEmN-uRTNv0yz_7zv3YDdHl-x6vhz2YQ2HFdgqktsrUC5EHFi-pyuws8JIeACD9nTE0r6jDJ5x5-FilrGOz_qEbJERUrQ946idWTyXsmd5gteAmjOKlHGAKSMgzAwjOPrCeh-x02GY0pCDRaYNy2VsDuGpedu-ueO5IgO3QosJVx5SfFaXMrEa0fgNE4aJ55NR6-hCDxUkHlKRIxwwwu86dv5QWyQY6EurUB5BaTga4jEwL4kTT5vESyjApGYm0KEfonE_tqimrsJlYZjodU68ES0plt0URzTFUTbFkapCrbBdlG_CNJJCEpyhpehV4aqw1bL4995O_lb9FLZFZm6XFliD0mT8hmewad8n_XR8ni3OTwvp3-s
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQSwHCgVEWX3gBpaK7cTJESFQEVAhKIhb5DoTUYm2qCkU_p5xmrSA4ABnb5HH9ryJn98A7FsCyfrICo5CagpQFPKwpQQ3SgYmQGFjGWfJJnSjETw8hNf5o7C0YLsXV5LZSf3psZvSIXfpV8lt-hT5TMOMIo_lFPNvbu_H5y9B5oy4SKEPd9zJ_KnMz318dUcTjPntWjTzNmfl_33nMizl6JIdj5bDCkxhtwJzBbm9AuUiiQPL93QFFj8pEq5CpznssbTtJIPfuPNwMctUx9_ahGyREVK0j8ZJO7N4lMqe5QSvDjVnFCljB1NGQJgZRnD0iT2-xy4Pw5CG7IyZNixPY7MGd2enzZM6zzMycCu0GHDlIcVnNSkTqxGNf2TCMPF8MmoNXeihgsRDKnKCA0b4LafOH2qLBAN9aRXKdSh1e13cAOYlceJpk3gJBZjUzAQ69EM07scW1dRVOCgMEz2PhDeiicSym-KIpjjKpjhSVdgubBflmzCNpJAEZ2gpelU4LGw1Kf69t82_Vd-D-Xrz6jK6PG9cbMGCyEzvKILbUBr0X3AHZu3roJ32d7OF-gGTcuLP
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBpYAoFPCBG1gF24mTIwIqEKhCYhG3yHUmaiXSVm2h8PeM06QtCA6Is5dEHjvzXjzzBuDQEkjWp1ZwFFITQVHIw4YS3CgZmACFjWWcFZvQ9Xrw_BzeTWXxZ9HuxZXkKKfBqTS1B9VunFSnEt-UDrkrxUou1CcWNAvzygXSO75-_zT-FhN8zoIYiQZxF0eZp838PMdX1zTBm9-uSDPPU1v9_zuvwUqOOtnZaJuswwy2S7BYBL2XYLUo7sDys16C5Smlwg1IH4Yd1m85KeF37jxfzDI18vcWIV5khCBt0zjJZxaPStyzPPArpeGMGDSm2GcEkJlhBFNfWPMjdvUZhvTIdByBw_LyNpvwWLt8OL_ieaUGboUWA648JN52ImViNaLxT00YJp5Pxj5BR0lUkHhITU6IwAi_4VT7Q22R4KEvrUK5BXPtThu3gXlJnHjaJF5CxJOGmUCHfojG_fCinroMR4WRou5IkCOaSC-7JY5oiaNsiSNVhkphxyg_nP1ICkkwh7aoV4bjwm6T5t9n2_lb9wNYvLuoRbfX9ZtdWBKZ5V3kYAXmBr1X3IMF-zZo9Xv72Z79BAg767M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+simplex-based+approximate+stochastic+dynamic+programming+schemes+for+a+real+hydropower+management+problem&rft.jtitle=Annals+of+operations+research&rft.au=Zephyr%2C+Luckny&rft.au=Lamond%2C+Bernard+F.&rft.au=Demeester%2C+Kenjy&rft.au=Latraverse%2C+Marco&rft.date=2025-08-01&rft.pub=Springer+US&rft.issn=0254-5330&rft.eissn=1572-9338&rft.volume=351&rft.issue=1&rft.spage=333&rft.epage=364&rft_id=info:doi/10.1007%2Fs10479-025-06561-4&rft.externalDocID=10_1007_s10479_025_06561_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon