P-Multigrid Method for the Discontinuous Galerkin Discretization of Elliptic Problems
In this paper, we propose a W -cycle p -multigrid method for solving the p -version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of elliptic problems. This SIPDG discretization employs hierarchical Legendre polynomial basis functions. Inspired by the uniform convergence t...
Gespeichert in:
| Veröffentlicht in: | Journal of scientific computing Jg. 105; H. 3; S. 76 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.12.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose a
W
-cycle
p
-multigrid method for solving the
p
-version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of elliptic problems. This SIPDG discretization employs hierarchical Legendre polynomial basis functions. Inspired by the uniform convergence theory of the
W
-cycle
hp
-multigrid method in [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], we provide a rigorous convergence analysis for the proposed
p
-multigrid method, considering both inherited and non-inherited bilinear forms of SIPDG discretization. Our theoretical results show significant improvement over [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], reducing the required number of smoothing steps from
O
(
p
2
)
to
O
(
p
)
, where
p
is the polynomial degree of the discrete broken polynomial space. Moreover, the convergence rate remains independent of the mesh size. Several numerical experiments are presented to verify our theoretical findings. Finally, we numerically verify the effectiveness of the
p
-multigrid method for unfitted finite element discretization in solving elliptic interface problems on general
C
2
-smooth interfaces. |
|---|---|
| AbstractList | In this paper, we propose a
W
-cycle
p
-multigrid method for solving the
p
-version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of elliptic problems. This SIPDG discretization employs hierarchical Legendre polynomial basis functions. Inspired by the uniform convergence theory of the
W
-cycle
hp
-multigrid method in [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], we provide a rigorous convergence analysis for the proposed
p
-multigrid method, considering both inherited and non-inherited bilinear forms of SIPDG discretization. Our theoretical results show significant improvement over [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], reducing the required number of smoothing steps from
O
(
p
2
)
to
O
(
p
)
, where
p
is the polynomial degree of the discrete broken polynomial space. Moreover, the convergence rate remains independent of the mesh size. Several numerical experiments are presented to verify our theoretical findings. Finally, we numerically verify the effectiveness of the
p
-multigrid method for unfitted finite element discretization in solving elliptic interface problems on general
C
2
-smooth interfaces. In this paper, we propose a W-cycle p-multigrid method for solving the p-version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of elliptic problems. This SIPDG discretization employs hierarchical Legendre polynomial basis functions. Inspired by the uniform convergence theory of the W-cycle hp-multigrid method in [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], we provide a rigorous convergence analysis for the proposed p-multigrid method, considering both inherited and non-inherited bilinear forms of SIPDG discretization. Our theoretical results show significant improvement over [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], reducing the required number of smoothing steps from O(p2) to O(p), where p is the polynomial degree of the discrete broken polynomial space. Moreover, the convergence rate remains independent of the mesh size. Several numerical experiments are presented to verify our theoretical findings. Finally, we numerically verify the effectiveness of the p-multigrid method for unfitted finite element discretization in solving elliptic interface problems on general C2-smooth interfaces. |
| ArticleNumber | 76 |
| Author | Lei, Nuo Zhang, Donghang Zheng, Weiying |
| Author_xml | – sequence: 1 givenname: Nuo surname: Lei fullname: Lei, Nuo organization: Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences – sequence: 2 givenname: Donghang surname: Zhang fullname: Zhang, Donghang organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences – sequence: 3 givenname: Weiying surname: Zheng fullname: Zheng, Weiying email: zwy@lsec.cc.ac.cn organization: LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, School of Mathematical Science, University of Chinese Academy of Sciences |
| BookMark | eNp9kE1LAzEYhINUsK3-AU8Bz6v52k1ylFqrYLEHew7ZTbZN3SY1yR7017u2gjcPLwPDzLzwTMDIB28BuMboFiPE7xJGEpcFIsNRjMqCn4ExLjkteCXxCIyREIPJOLsAk5R2CCEpJBmD9apY9l12m-gMXNq8DQa2IcK8tfDBpSb47Hwf-gQXurPx3fmjHW12Xzq74GFo4bzr3CG7Bq5iqDu7T5fgvNVdsle_OgXrx_nb7Kl4eV08z-5fioZwkgtqZUmbkiGBsGW6knUrubFaVqatrDSl1LWUpjJG00oTwxrBtW6FroWVNWvoFNycdg8xfPQ2ZbULffTDS0VJJUpGmGRDipxSTQwpRduqQ3R7HT8VRuoHnzrhUwM-dcSn-FCip1Iawn5j49_0P61veIF1-A |
| Cites_doi | 10.1002/anac.200410019 10.1137/18M1204383 10.1002/nla.1816 10.1007/s002110050336 10.1137/1034116 10.1016/j.jcp.2023.112384 10.1016/j.jco.2006.10.003 10.1016/j.apnum.2009.01.002 10.1016/j.cam.2006.08.029 10.1016/j.cam.2021.113815 10.1007/s10915-016-0259-9 10.4208/ijnam2024-1033 10.1007/s00211-021-01243-2 10.1137/130947015 10.1023/A:1015118613130 10.1137/18M1193505 10.1007/BF02248021 10.2514/6.2003-3989 10.1017/S0962492917000083 10.1007/s10915-010-9390-1 10.1007/s10915-018-0783-x 10.1002/nla.504 10.1002/nla.2518 10.2514/1.15497 10.1016/j.camwa.2017.06.025 10.1090/S0025-5718-10-02335-5 10.1007/s10092-017-0223-6 10.1137/S0036142901384162 10.1007/s00211-015-0712-y 10.1007/s10915-009-9293-1 10.1137/0719052 10.1016/j.jcp.2013.07.035 10.1007/BF01065177 10.1007/BF01061297 10.1142/S0218202514500146 10.1145/3242094 10.1016/j.camwa.2022.08.019 10.1016/j.jcp.2005.06.019 10.1007/s11075-023-01643-5 10.1090/S0025-5718-2013-02760-3 10.1016/S0045-7825(02)00524-8 10.1093/acprof:oso/9780199678792.001.0001 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10915-025-03105-7 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| ExternalDocumentID | 10_1007_s10915_025_03105_7 |
| GrantInformation_xml | – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDB0640000; XDB0640100 – fundername: National Key R & D Program of China grantid: 2019YFA0709600; 2019YFA0709602 – fundername: China Postdoctoral Science Foundation grantid: GZB20230816; 1240187 funderid: http://dx.doi.org/10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 12288201 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDB0640000; XDB0640300 |
| GroupedDBID | -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BENPR BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9R PF- PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEFIE AEKMD AFEXP AFFHD AFFNX AFGCZ AFKRA AGGDS AGQPQ AI. AJBLW ARAPS BBWZM BDATZ BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HF~ H~9 K7- KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB R4E RNI RZC RZE RZK S26 S28 SCLPG T16 TEORI VH1 ZWQNP AESKC JQ2 |
| ID | FETCH-LOGICAL-c272t-3e953c540801e4a69bf97dea96df6e9d59ab99d6dda36a2d4c87aaf8ab8e9b4c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001607675300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Thu Nov 06 12:49:35 EST 2025 Sat Nov 29 07:02:41 EST 2025 Wed Dec 10 12:23:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | multigrid algorithm discontinuous Galerkin method elliptic problems polynomial smoother 65N55 65F08 65N30 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-3e953c540801e4a69bf97dea96df6e9d59ab99d6dda36a2d4c87aaf8ab8e9b4c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3268542494 |
| PQPubID | 2043771 |
| ParticipantIDs | proquest_journals_3268542494 crossref_primary_10_1007_s10915_025_03105_7 springer_journals_10_1007_s10915_025_03105_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | B Stamm (3105_CR36) 2010; 79 3105_CR38 L Haupt (3105_CR25) 2013; 255 SC Brenner (3105_CR12) 2005; 2 B Ayuso de Dios (3105_CR20) 2009; 40 Z Chen (3105_CR14) 2008; 79 I Perugia (3105_CR34) 2002; 17 VA Dobrev (3105_CR30) 2006; 13 Z Chen (3105_CR17) 2024; 21 C Thiele (3105_CR40) 2017; 74 D Arnold (3105_CR9) 2002; 02 A Hansbo (3105_CR23) 2002; 191 RD Lazarov (3105_CR29) 2007; 23 EM Ronquist (3105_CR35) 1987; 2 3105_CR10 Y Maday (3105_CR33) 1988; 3 3105_CR37 BT Helenbrook (3105_CR26) 2006; 44 F Xu (3105_CR43) 2024; 96 C Thiele (3105_CR39) 2022; 402 D Arnold (3105_CR8) 1982; 19 3105_CR27 J Xu (3105_CR44) 2017; 26 PF Antonietti (3105_CR5) 2017; 70 PF Antonietti (3105_CR6) 2015; 53 3105_CR1 B Ayuso de Dios (3105_CR18) 2017; 37 Z Chen (3105_CR15) 2021; 149 Y Epshteyn (3105_CR21) 2007; 206 P Bastian (3105_CR11) 2012; 19 H Luo (3105_CR32) 2006; 211 J Lottes (3105_CR31) 2023; 30 PF Antonietti (3105_CR2) 2020; 42 PF Antonietti (3105_CR7) 2011; 46 R Hartmann (3105_CR24) 2009; 59 PF Antonietti (3105_CR3) 2019; 78 T Wildey (3105_CR42) 2019; 41 A Cangiani (3105_CR13) 2014; 24 J Gunatilake (3105_CR22) 2022; 124 3105_CR41 PF Antonietti (3105_CR4) 2017; 54 Z Chen (3105_CR16) 2023; 491 B Ayuso de Dios (3105_CR19) 2014; 83 Q Hong (3105_CR28) 2016; 132 J Xu (3105_CR45) 1992; 34 3105_CR46 |
| References_xml | – volume: 2 start-page: 3 year: 2005 ident: 3105_CR12 publication-title: Applied Numerical Analysis & Computational Mathematics doi: 10.1002/anac.200410019 – volume: 42 start-page: A1147 year: 2020 ident: 3105_CR2 publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1204383 – volume: 19 start-page: 367 year: 2012 ident: 3105_CR11 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.1816 – volume: 79 start-page: 175 year: 2008 ident: 3105_CR14 publication-title: Numer. Math. doi: 10.1007/s002110050336 – ident: 3105_CR38 – volume: 34 start-page: 581 year: 1992 ident: 3105_CR45 publication-title: SIAM Rev. doi: 10.1137/1034116 – volume: 491 year: 2023 ident: 3105_CR16 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2023.112384 – volume: 23 start-page: 498 year: 2007 ident: 3105_CR29 publication-title: J. Complexity. doi: 10.1016/j.jco.2006.10.003 – volume: 59 start-page: 1737 year: 2009 ident: 3105_CR24 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2009.01.002 – volume: 206 start-page: 843 year: 2007 ident: 3105_CR21 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2006.08.029 – volume: 402 year: 2022 ident: 3105_CR39 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2021.113815 – volume: 70 start-page: 608 year: 2017 ident: 3105_CR5 publication-title: J. Sci. Comput. doi: 10.1007/s10915-016-0259-9 – volume: 21 start-page: 822 year: 2024 ident: 3105_CR17 publication-title: Int. J. Numer. Anal. Model. doi: 10.4208/ijnam2024-1033 – volume: 149 start-page: 507 year: 2021 ident: 3105_CR15 publication-title: Numer. Math. doi: 10.1007/s00211-021-01243-2 – volume: 53 start-page: 598 year: 2015 ident: 3105_CR6 publication-title: SIAM J. Numer. Anal. doi: 10.1137/130947015 – volume: 17 start-page: 561 year: 2002 ident: 3105_CR34 publication-title: J. Sci. Comput. doi: 10.1023/A:1015118613130 – volume: 41 start-page: S172 year: 2019 ident: 3105_CR42 publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1193505 – ident: 3105_CR10 doi: 10.1007/BF02248021 – ident: 3105_CR27 doi: 10.2514/6.2003-3989 – volume: 26 start-page: 591 year: 2017 ident: 3105_CR44 publication-title: Acta Numer doi: 10.1017/S0962492917000083 – volume: 46 start-page: 124 year: 2011 ident: 3105_CR7 publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9390-1 – volume: 78 start-page: 625 year: 2019 ident: 3105_CR3 publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0783-x – ident: 3105_CR46 – volume: 13 start-page: 753 year: 2006 ident: 3105_CR30 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.504 – volume: 30 start-page: 1 year: 2023 ident: 3105_CR31 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.2518 – volume: 44 start-page: 566 year: 2006 ident: 3105_CR26 publication-title: AIAA J. doi: 10.2514/1.15497 – volume: 37 start-page: 646 year: 2017 ident: 3105_CR18 publication-title: IMA J. Numer. Anal. – volume: 74 start-page: 1769 year: 2017 ident: 3105_CR40 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.06.025 – volume: 79 start-page: 2117 year: 2010 ident: 3105_CR36 publication-title: Math. Comp. doi: 10.1090/S0025-5718-10-02335-5 – volume: 54 start-page: 1169 year: 2017 ident: 3105_CR4 publication-title: Calcolo doi: 10.1007/s10092-017-0223-6 – volume: 02 start-page: 1749 year: 2002 ident: 3105_CR9 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901384162 – volume: 132 start-page: 23 year: 2016 ident: 3105_CR28 publication-title: Numer. Math. doi: 10.1007/s00211-015-0712-y – volume: 40 start-page: 4 year: 2009 ident: 3105_CR20 publication-title: J. Sci. Comput. doi: 10.1007/s10915-009-9293-1 – volume: 19 start-page: 742 year: 1982 ident: 3105_CR8 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0719052 – volume: 255 start-page: 384 year: 2013 ident: 3105_CR25 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.07.035 – volume: 3 start-page: 323 year: 1988 ident: 3105_CR33 publication-title: J. Sci. Comput. doi: 10.1007/BF01065177 – volume: 2 start-page: 389 year: 1987 ident: 3105_CR35 publication-title: J. Sci. Comput. doi: 10.1007/BF01061297 – volume: 24 start-page: 2009 year: 2014 ident: 3105_CR13 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202514500146 – ident: 3105_CR1 doi: 10.1145/3242094 – volume: 124 start-page: 52 year: 2022 ident: 3105_CR22 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2022.08.019 – volume: 211 start-page: 767 year: 2006 ident: 3105_CR32 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.06.019 – ident: 3105_CR41 – volume: 96 start-page: 185 year: 2024 ident: 3105_CR43 publication-title: Numer. Algorithms doi: 10.1007/s11075-023-01643-5 – volume: 83 start-page: 1083 year: 2014 ident: 3105_CR19 publication-title: Math. Comp. doi: 10.1090/S0025-5718-2013-02760-3 – volume: 191 start-page: 5537 year: 2002 ident: 3105_CR23 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(02)00524-8 – ident: 3105_CR37 doi: 10.1093/acprof:oso/9780199678792.001.0001 |
| SSID | ssj0009892 |
| Score | 2.4179492 |
| Snippet | In this paper, we propose a
W
-cycle
p
-multigrid method for solving the
p
-version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of... In this paper, we propose a W-cycle p-multigrid method for solving the p-version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 76 |
| SubjectTerms | Algorithms Approximation Basis functions Computational Mathematics and Numerical Analysis Convergence Discretization Galerkin method Iterative methods Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical functions Mathematics Mathematics and Statistics Partial differential equations Polynomials Theoretical |
| Title | P-Multigrid Method for the Discontinuous Galerkin Discretization of Elliptic Problems |
| URI | https://link.springer.com/article/10.1007/s10915-025-03105-7 https://www.proquest.com/docview/3268542494 |
| Volume | 105 |
| WOSCitedRecordID | wos001607675300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYABaAFRvuSBAQSWqOPY8YiAwtKqAoq6Rf4KytKipuX3Y7sJAQQDDFkSx4rubN9zfO8dwEmHKsqJzLAL_hZTYTkWWsVYEWEJ01wmkQrFJni_n4xGYlCSwooq2706kgwr9Seym-h4NrG7HCaJMV-GFRfuEl-w4eHxuZbaTUIpZDd9XBvKaUmV-bmPr-GoxpjfjkVDtOlu_u87t2CjRJfoajEcmrBkxy1Y731IsxYtaJazuUCnpeT02TYMBzgwcV-muUG9UFQaOTSL3HvoJi98Pns-nk_mBbpzAcX_Xg-3PQNyQeNEkwz59A-3AGk0WBSpKXZg2L19ur7HZcEFrAknMxxZEUfaYTgXtiyVTKhMcGOlYCZjVphYSCWEYcbIiEliqE64lFkiVWKFojrahcZ4MrZ7gCxRLDJKey0ZtwOMpeI8uySGccV4RE0bziu7p68LXY20VlD2FkydBdNgwZS34bByTVrOsSJ1wDOJqds-0jZcVK6oH__e2_7fmh_AGvHeDDksh9CYTef2CFb12ywvpsdh7L0DPq_TqA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xkoABKA9RKOCBAQSWwHHseES8imirClrEFvkV1KVFTcvvx3YTCggGGLIkjhXd2b7P8X3fARyeU0U5kRl2wd9iKizHQqsYKyIsYZrLJFKh2ARvtZLnZ9EuSGF5me1eHkmGlfoT2U2cezaxuxwmiTGfhXnqIpZXzH94fJpK7SahFLKbPq4N5bSgyvzcx9dwNMWY345FQ7S5Wf3fd67BSoEu0cVkOFRgxvbXYbn5Ic2ar0OlmM05Oiokp483oNvGgYn7MuwZ1AxFpZFDs8i9h656uc9n7_XHg3GObl1A8b_Xw23PgJzQONEgQz79wy1AGrUnRWryTejeXHcu67gouIA14WSEIyviSDsM58KWpZIJlQlurBTMZMwKEwuphDDMGBkxSQzVCZcyS6RKrFBUR1sw1x_07TYgSxSLjNJeS8btAGOpOM_OiGFcMR5RU4WT0u7p60RXI50qKHsLps6CabBgyqtQK12TFnMsTx3wTGLqto-0CqelK6aPf-9t52_ND2Cx3mk20sZd634Xloj3bMhnqcHcaDi2e7Cg30a9fLgfxuE7NBbWjA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xEoIBaAFRKOCBAQQW4Dh2PCKggICqEhSxRX4FdUlR0_L7sZ2UAoIBMWRJHMu68-Xu4vu-A9g7pYpyIjPsnL_FVFiOhVYxVkRYwjSXSaRCswnebifPz6LzCcUfqt3HR5IlpsGzNOXD41eTHX8CvolTjyx2l4tPYsynYZb6Qnqfrz88TWh3k9AW2ZmSG0M5rWAzP8_x1TVN4s1vR6TB87SW_7_mFViqok50Vm6TGkzZvA6L9x-UrUUdapWVF2i_oqI-WIVuBweE7sugZ9B9aDaNXJSL3Hvoolf4BfTyUX9UoCvnaPxv93DbIyNLeCfqZ8iXhbgPk0adsnlNsQbd1uXj-TWuGjFgTTgZ4siKONIutnPuzFLJhMoEN1YKZjJmhYmFVEIYZoyMmCSG6oRLmSVSJVYoqqN1mMn7ud0AZIlikVHac8y4zDCWivPshBjGFeMRNQ04HOsgfS35NtIJs7KXYOokmAYJprwBzbGa0sr2itQFpElMXVpJG3A0Vsvk8e-zbf5t-C7Mdy5a6d1N-3YLFohXbChzacLMcDCy2zCn34a9YrATtuQ7ik_fcA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P-Multigrid+Method+for+the+Discontinuous+Galerkin+Discretization+of+Elliptic+Problems&rft.jtitle=Journal+of+scientific+computing&rft.au=Lei%2C+Nuo&rft.au=Zhang%2C+Donghang&rft.au=Zheng%2C+Weiying&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=105&rft.issue=3&rft.spage=76&rft_id=info:doi/10.1007%2Fs10915-025-03105-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |