P-Multigrid Method for the Discontinuous Galerkin Discretization of Elliptic Problems

In this paper, we propose a W -cycle p -multigrid method for solving the p -version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of elliptic problems. This SIPDG discretization employs hierarchical Legendre polynomial basis functions. Inspired by the uniform convergence t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 105; číslo 3; s. 76
Hlavní autoři: Lei, Nuo, Zhang, Donghang, Zheng, Weiying
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2025
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a W -cycle p -multigrid method for solving the p -version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of elliptic problems. This SIPDG discretization employs hierarchical Legendre polynomial basis functions. Inspired by the uniform convergence theory of the W -cycle hp -multigrid method in [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], we provide a rigorous convergence analysis for the proposed p -multigrid method, considering both inherited and non-inherited bilinear forms of SIPDG discretization. Our theoretical results show significant improvement over [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], reducing the required number of smoothing steps from O ( p 2 ) to O ( p ) , where p is the polynomial degree of the discrete broken polynomial space. Moreover, the convergence rate remains independent of the mesh size. Several numerical experiments are presented to verify our theoretical findings. Finally, we numerically verify the effectiveness of the p -multigrid method for unfitted finite element discretization in solving elliptic interface problems on general C 2 -smooth interfaces.
AbstractList In this paper, we propose a W -cycle p -multigrid method for solving the p -version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of elliptic problems. This SIPDG discretization employs hierarchical Legendre polynomial basis functions. Inspired by the uniform convergence theory of the W -cycle hp -multigrid method in [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], we provide a rigorous convergence analysis for the proposed p -multigrid method, considering both inherited and non-inherited bilinear forms of SIPDG discretization. Our theoretical results show significant improvement over [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], reducing the required number of smoothing steps from O ( p 2 ) to O ( p ) , where p is the polynomial degree of the discrete broken polynomial space. Moreover, the convergence rate remains independent of the mesh size. Several numerical experiments are presented to verify our theoretical findings. Finally, we numerically verify the effectiveness of the p -multigrid method for unfitted finite element discretization in solving elliptic interface problems on general C 2 -smooth interfaces.
In this paper, we propose a W-cycle p-multigrid method for solving the p-version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of elliptic problems. This SIPDG discretization employs hierarchical Legendre polynomial basis functions. Inspired by the uniform convergence theory of the W-cycle hp-multigrid method in [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], we provide a rigorous convergence analysis for the proposed p-multigrid method, considering both inherited and non-inherited bilinear forms of SIPDG discretization. Our theoretical results show significant improvement over [P. F. Antonietti, et al., SIAM J. Numer. Anal., 53 (2015)], reducing the required number of smoothing steps from O(p2) to O(p), where p is the polynomial degree of the discrete broken polynomial space. Moreover, the convergence rate remains independent of the mesh size. Several numerical experiments are presented to verify our theoretical findings. Finally, we numerically verify the effectiveness of the p-multigrid method for unfitted finite element discretization in solving elliptic interface problems on general C2-smooth interfaces.
ArticleNumber 76
Author Lei, Nuo
Zhang, Donghang
Zheng, Weiying
Author_xml – sequence: 1
  givenname: Nuo
  surname: Lei
  fullname: Lei, Nuo
  organization: Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 2
  givenname: Donghang
  surname: Zhang
  fullname: Zhang, Donghang
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 3
  givenname: Weiying
  surname: Zheng
  fullname: Zheng, Weiying
  email: zwy@lsec.cc.ac.cn
  organization: LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, School of Mathematical Science, University of Chinese Academy of Sciences
BookMark eNp9kE1LAzEYhINUsK3-AU8Bz6v52k1ylFqrYLEHew7ZTbZN3SY1yR7017u2gjcPLwPDzLzwTMDIB28BuMboFiPE7xJGEpcFIsNRjMqCn4ExLjkteCXxCIyREIPJOLsAk5R2CCEpJBmD9apY9l12m-gMXNq8DQa2IcK8tfDBpSb47Hwf-gQXurPx3fmjHW12Xzq74GFo4bzr3CG7Bq5iqDu7T5fgvNVdsle_OgXrx_nb7Kl4eV08z-5fioZwkgtqZUmbkiGBsGW6knUrubFaVqatrDSl1LWUpjJG00oTwxrBtW6FroWVNWvoFNycdg8xfPQ2ZbULffTDS0VJJUpGmGRDipxSTQwpRduqQ3R7HT8VRuoHnzrhUwM-dcSn-FCip1Iawn5j49_0P61veIF1-A
Cites_doi 10.1002/anac.200410019
10.1137/18M1204383
10.1002/nla.1816
10.1007/s002110050336
10.1137/1034116
10.1016/j.jcp.2023.112384
10.1016/j.jco.2006.10.003
10.1016/j.apnum.2009.01.002
10.1016/j.cam.2006.08.029
10.1016/j.cam.2021.113815
10.1007/s10915-016-0259-9
10.4208/ijnam2024-1033
10.1007/s00211-021-01243-2
10.1137/130947015
10.1023/A:1015118613130
10.1137/18M1193505
10.1007/BF02248021
10.2514/6.2003-3989
10.1017/S0962492917000083
10.1007/s10915-010-9390-1
10.1007/s10915-018-0783-x
10.1002/nla.504
10.1002/nla.2518
10.2514/1.15497
10.1016/j.camwa.2017.06.025
10.1090/S0025-5718-10-02335-5
10.1007/s10092-017-0223-6
10.1137/S0036142901384162
10.1007/s00211-015-0712-y
10.1007/s10915-009-9293-1
10.1137/0719052
10.1016/j.jcp.2013.07.035
10.1007/BF01065177
10.1007/BF01061297
10.1142/S0218202514500146
10.1145/3242094
10.1016/j.camwa.2022.08.019
10.1016/j.jcp.2005.06.019
10.1007/s11075-023-01643-5
10.1090/S0025-5718-2013-02760-3
10.1016/S0045-7825(02)00524-8
10.1093/acprof:oso/9780199678792.001.0001
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10915-025-03105-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_025_03105_7
GrantInformation_xml – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDB0640000; XDB0640100
– fundername: National Key R & D Program of China
  grantid: 2019YFA0709600; 2019YFA0709602
– fundername: China Postdoctoral Science Foundation
  grantid: GZB20230816; 1240187
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 12288201
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDB0640000; XDB0640300
GroupedDBID -~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BENPR
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFFNX
AFGCZ
AFKRA
AGGDS
AGQPQ
AI.
AJBLW
ARAPS
BBWZM
BDATZ
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HF~
H~9
K7-
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZE
RZK
S26
S28
SCLPG
T16
TEORI
VH1
ZWQNP
AESKC
JQ2
ID FETCH-LOGICAL-c272t-3e953c540801e4a69bf97dea96df6e9d59ab99d6dda36a2d4c87aaf8ab8e9b4c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001607675300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Thu Nov 06 12:49:35 EST 2025
Sat Nov 29 07:02:41 EST 2025
Wed Dec 10 12:23:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords multigrid algorithm
discontinuous Galerkin method
elliptic problems
polynomial smoother
65N55
65F08
65N30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-3e953c540801e4a69bf97dea96df6e9d59ab99d6dda36a2d4c87aaf8ab8e9b4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3268542494
PQPubID 2043771
ParticipantIDs proquest_journals_3268542494
crossref_primary_10_1007_s10915_025_03105_7
springer_journals_10_1007_s10915_025_03105_7
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References B Stamm (3105_CR36) 2010; 79
3105_CR38
L Haupt (3105_CR25) 2013; 255
SC Brenner (3105_CR12) 2005; 2
B Ayuso de Dios (3105_CR20) 2009; 40
Z Chen (3105_CR14) 2008; 79
I Perugia (3105_CR34) 2002; 17
VA Dobrev (3105_CR30) 2006; 13
Z Chen (3105_CR17) 2024; 21
C Thiele (3105_CR40) 2017; 74
D Arnold (3105_CR9) 2002; 02
A Hansbo (3105_CR23) 2002; 191
RD Lazarov (3105_CR29) 2007; 23
EM Ronquist (3105_CR35) 1987; 2
3105_CR10
Y Maday (3105_CR33) 1988; 3
3105_CR37
BT Helenbrook (3105_CR26) 2006; 44
F Xu (3105_CR43) 2024; 96
C Thiele (3105_CR39) 2022; 402
D Arnold (3105_CR8) 1982; 19
3105_CR27
J Xu (3105_CR44) 2017; 26
PF Antonietti (3105_CR5) 2017; 70
PF Antonietti (3105_CR6) 2015; 53
3105_CR1
B Ayuso de Dios (3105_CR18) 2017; 37
Z Chen (3105_CR15) 2021; 149
Y Epshteyn (3105_CR21) 2007; 206
P Bastian (3105_CR11) 2012; 19
H Luo (3105_CR32) 2006; 211
J Lottes (3105_CR31) 2023; 30
PF Antonietti (3105_CR2) 2020; 42
PF Antonietti (3105_CR7) 2011; 46
R Hartmann (3105_CR24) 2009; 59
PF Antonietti (3105_CR3) 2019; 78
T Wildey (3105_CR42) 2019; 41
A Cangiani (3105_CR13) 2014; 24
J Gunatilake (3105_CR22) 2022; 124
3105_CR41
PF Antonietti (3105_CR4) 2017; 54
Z Chen (3105_CR16) 2023; 491
B Ayuso de Dios (3105_CR19) 2014; 83
Q Hong (3105_CR28) 2016; 132
J Xu (3105_CR45) 1992; 34
3105_CR46
References_xml – volume: 2
  start-page: 3
  year: 2005
  ident: 3105_CR12
  publication-title: Applied Numerical Analysis & Computational Mathematics
  doi: 10.1002/anac.200410019
– volume: 42
  start-page: A1147
  year: 2020
  ident: 3105_CR2
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1204383
– volume: 19
  start-page: 367
  year: 2012
  ident: 3105_CR11
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.1816
– volume: 79
  start-page: 175
  year: 2008
  ident: 3105_CR14
  publication-title: Numer. Math.
  doi: 10.1007/s002110050336
– ident: 3105_CR38
– volume: 34
  start-page: 581
  year: 1992
  ident: 3105_CR45
  publication-title: SIAM Rev.
  doi: 10.1137/1034116
– volume: 491
  year: 2023
  ident: 3105_CR16
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2023.112384
– volume: 23
  start-page: 498
  year: 2007
  ident: 3105_CR29
  publication-title: J. Complexity.
  doi: 10.1016/j.jco.2006.10.003
– volume: 59
  start-page: 1737
  year: 2009
  ident: 3105_CR24
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2009.01.002
– volume: 206
  start-page: 843
  year: 2007
  ident: 3105_CR21
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.08.029
– volume: 402
  year: 2022
  ident: 3105_CR39
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2021.113815
– volume: 70
  start-page: 608
  year: 2017
  ident: 3105_CR5
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0259-9
– volume: 21
  start-page: 822
  year: 2024
  ident: 3105_CR17
  publication-title: Int. J. Numer. Anal. Model.
  doi: 10.4208/ijnam2024-1033
– volume: 149
  start-page: 507
  year: 2021
  ident: 3105_CR15
  publication-title: Numer. Math.
  doi: 10.1007/s00211-021-01243-2
– volume: 53
  start-page: 598
  year: 2015
  ident: 3105_CR6
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130947015
– volume: 17
  start-page: 561
  year: 2002
  ident: 3105_CR34
  publication-title: J. Sci. Comput.
  doi: 10.1023/A:1015118613130
– volume: 41
  start-page: S172
  year: 2019
  ident: 3105_CR42
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1193505
– ident: 3105_CR10
  doi: 10.1007/BF02248021
– ident: 3105_CR27
  doi: 10.2514/6.2003-3989
– volume: 26
  start-page: 591
  year: 2017
  ident: 3105_CR44
  publication-title: Acta Numer
  doi: 10.1017/S0962492917000083
– volume: 46
  start-page: 124
  year: 2011
  ident: 3105_CR7
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9390-1
– volume: 78
  start-page: 625
  year: 2019
  ident: 3105_CR3
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0783-x
– ident: 3105_CR46
– volume: 13
  start-page: 753
  year: 2006
  ident: 3105_CR30
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.504
– volume: 30
  start-page: 1
  year: 2023
  ident: 3105_CR31
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.2518
– volume: 44
  start-page: 566
  year: 2006
  ident: 3105_CR26
  publication-title: AIAA J.
  doi: 10.2514/1.15497
– volume: 37
  start-page: 646
  year: 2017
  ident: 3105_CR18
  publication-title: IMA J. Numer. Anal.
– volume: 74
  start-page: 1769
  year: 2017
  ident: 3105_CR40
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2017.06.025
– volume: 79
  start-page: 2117
  year: 2010
  ident: 3105_CR36
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-10-02335-5
– volume: 54
  start-page: 1169
  year: 2017
  ident: 3105_CR4
  publication-title: Calcolo
  doi: 10.1007/s10092-017-0223-6
– volume: 02
  start-page: 1749
  year: 2002
  ident: 3105_CR9
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901384162
– volume: 132
  start-page: 23
  year: 2016
  ident: 3105_CR28
  publication-title: Numer. Math.
  doi: 10.1007/s00211-015-0712-y
– volume: 40
  start-page: 4
  year: 2009
  ident: 3105_CR20
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-009-9293-1
– volume: 19
  start-page: 742
  year: 1982
  ident: 3105_CR8
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0719052
– volume: 255
  start-page: 384
  year: 2013
  ident: 3105_CR25
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.07.035
– volume: 3
  start-page: 323
  year: 1988
  ident: 3105_CR33
  publication-title: J. Sci. Comput.
  doi: 10.1007/BF01065177
– volume: 2
  start-page: 389
  year: 1987
  ident: 3105_CR35
  publication-title: J. Sci. Comput.
  doi: 10.1007/BF01061297
– volume: 24
  start-page: 2009
  year: 2014
  ident: 3105_CR13
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202514500146
– ident: 3105_CR1
  doi: 10.1145/3242094
– volume: 124
  start-page: 52
  year: 2022
  ident: 3105_CR22
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2022.08.019
– volume: 211
  start-page: 767
  year: 2006
  ident: 3105_CR32
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.06.019
– ident: 3105_CR41
– volume: 96
  start-page: 185
  year: 2024
  ident: 3105_CR43
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-023-01643-5
– volume: 83
  start-page: 1083
  year: 2014
  ident: 3105_CR19
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-2013-02760-3
– volume: 191
  start-page: 5537
  year: 2002
  ident: 3105_CR23
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(02)00524-8
– ident: 3105_CR37
  doi: 10.1093/acprof:oso/9780199678792.001.0001
SSID ssj0009892
Score 2.4179492
Snippet In this paper, we propose a W -cycle p -multigrid method for solving the p -version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of...
In this paper, we propose a W-cycle p-multigrid method for solving the p-version symmetric interior penalty discontinuous Galerkin (SIPDG) discretization of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 76
SubjectTerms Algorithms
Approximation
Basis functions
Computational Mathematics and Numerical Analysis
Convergence
Discretization
Galerkin method
Iterative methods
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical functions
Mathematics
Mathematics and Statistics
Partial differential equations
Polynomials
Theoretical
Title P-Multigrid Method for the Discontinuous Galerkin Discretization of Elliptic Problems
URI https://link.springer.com/article/10.1007/s10915-025-03105-7
https://www.proquest.com/docview/3268542494
Volume 105
WOSCitedRecordID wos001607675300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYABaAFRvuSBAQSWQuzE9oiAwtKqAoq6RY5joywpalp-P7aTUEAwwJAlcazozvad43vvAZwIE0sWu8pWHlBMpVRYMEKwcEQpkY2AQVCJTbDBgI_HYliDwsqm2r05kvQr9Sewm7h0aGJ72ZwkwmwZVmy4406w4eHxeUG1y70Usp0-tg1ltIbK_NzH13C0yDG_HYv6aNPb_N93bsFGnV2iq2o4tGFJFx1Y739Qs5YdaNezuUSnNeX02TaMhtgjcV-meYb6XlQa2WwW2ffQTV66eva8mE_mJbqzAcX9Xve3HQKygnGiiUGu_MMuQAoNK5GacgdGvdun63tcCy5gFbJwhokWEVE2h7NhS1MZi9QIlmkp4szEWmSRkKkQWZxlksQyzKjiTErDZcq1SKkiu9AqJoXeAyQjRmWgQq6IpoSbNA2NMJqHKnA7LtKF88buyWvFq5EsGJSdBRNrwcRbMGFdOGxck9RzrExs4skjarePtAsXjSsWj3_vbf9vzQ9gLXTe9DUsh9CaTef6CFbV2ywvp8d-7L0Dj9vSfQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT4MwFH7RaaIe1E2N06k9eNAoCdJC26NR54zbsuhmvJFSitmFmbH5-20LiBo96IELlIa81_Z9pe_7HsAxTwJBA5PZylziECGkwynGDjdCKb6OgK6bF5ug_T57fuaDghSWldnu5ZGkXak_kd34hWET60tjEt-hi7BEdMQyivkPj0-V1C6zpZD19NFtCCUFVebnPr6GowpjfjsWtdGmvfG_79yE9QJdost8ONRhQaUNWOt9SLNmDagXszlDJ4Xk9OkWjAaOZeK-TMcx6tmi0kijWaTfQ9fjzOSzj9P5ZJ6hWx1QzO91e9swIHMaJ5okyKR_6AVIokFepCbbhlH7ZnjVcYqCC470qDdzsOI-lhrD6bCliAh4lHAaK8GDOAkUj30uIs7jII4FDoQXE8moEAkTEVM8IhLvQC2dpGoXkPApEa70mMSKYJZEkZfwRDFPumbHhZtwVto9fM11NcJKQdlYMNQWDK0FQ9qEVumasJhjWaiBJ_OJ3j6SJpyXrqge_97b3t-aH8FKZ9jrht27_v0-rHrGszafpQW12XSuDmBZvs3G2fTQjsN3dz7VYQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xEoIBaAFRKOCBAQRRQ-zE9oiAAgKqSlDEFjl-oC4palp-P7aTUkAwIIYsiWNZd77cXXzfdwAH3CSCJq6ylYUkIELIgFOMA-6IUmLrAcOwbDZBOx32_My7n1D8vtp9ciRZYhocS1M-ar0q0_oEfOOnDllsLxufxAGdhXniCuldvv7wNKXdZb4tsjUlO4ZQUsFmfp7jq2uaxpvfjki952mv_n_Na7BSRZ3orNwmNZjReR2W7z8oW4s61CorL9BhRUV9tA69buARui_DvkL3vtk0slEusu-hi37hFtDPx4Nxga6so3G_3f1th4ws4Z1oYJArC7EfJom6ZfOaYgN67cvH8-ugasQQyIhGowBrHmNpYzvrzjQRCc8Mp0oLniiTaK5iLjLOVaKUwImIFJGMCmGYyJjmGZF4E-byQa63AImYEhHKiEmsCWYmyyLDjWaRDF0mhhtwPNFB-lrybaRTZmUnwdRKMPUSTGkDmhM1pZXtFakNSFlMbFpJGnAyUcv08e-zbf9t-D4sdi_a6d1N53YHliKnWF_m0oS50XCsd2FBvo36xXDPb8l3rjLeRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P-Multigrid+Method+for+the+Discontinuous+Galerkin+Discretization+of+Elliptic+Problems&rft.jtitle=Journal+of+scientific+computing&rft.au=Lei%2C+Nuo&rft.au=Zhang%2C+Donghang&rft.au=Zheng%2C+Weiying&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=105&rft.issue=3&rft.spage=76&rft_id=info:doi/10.1007%2Fs10915-025-03105-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon