Generalizations of Rogers–Ramanujan type identities Generalizations of Rogers–Ramanujan type identities

The Rogers–Ramanujan identities were first proved by Rogers in 1894 and later rediscovered by Ramanujan around 1913. During the study of these two identities, many Rogers–Ramanujan type identities have been found, and these identities have always been of great interest to mathematicians. In this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal Jg. 68; H. 1; S. 32
Hauptverfasser: Cui, Su-Ping, Gu, Nancy S. S., Wang, Qian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2025
Springer Nature B.V
Schlagworte:
ISSN:1382-4090, 1572-9303
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Rogers–Ramanujan identities were first proved by Rogers in 1894 and later rediscovered by Ramanujan around 1913. During the study of these two identities, many Rogers–Ramanujan type identities have been found, and these identities have always been of great interest to mathematicians. In this paper, by means of properties of Appell–Lerch sums in combination with Bailey pairs and Bailey’s lemma, we derive some generalizations of Rogers–Ramanujan type identities, which include some known identities and also imply some new ones.
AbstractList The Rogers–Ramanujan identities were first proved by Rogers in 1894 and later rediscovered by Ramanujan around 1913. During the study of these two identities, many Rogers–Ramanujan type identities have been found, and these identities have always been of great interest to mathematicians. In this paper, by means of properties of Appell–Lerch sums in combination with Bailey pairs and Bailey’s lemma, we derive some generalizations of Rogers–Ramanujan type identities, which include some known identities and also imply some new ones.
ArticleNumber 32
Author Gu, Nancy S. S.
Wang, Qian
Cui, Su-Ping
Author_xml – sequence: 1
  givenname: Su-Ping
  surname: Cui
  fullname: Cui, Su-Ping
  organization: School of Mathematical Sciences, Qufu Normal University
– sequence: 2
  givenname: Nancy S. S.
  surname: Gu
  fullname: Gu, Nancy S. S.
  email: gu@nankai.edu.cn
  organization: Center for Combinatorics, LPMC, Nankai University
– sequence: 3
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  organization: Center for Combinatorics, LPMC, Nankai University
BookMark eNp9kM1KQzEQhYNUsK2-gKsLrqOTvyZZStFWKAhF1yH2zpVb2qQmt4u68h18Q5_E1Cu4c3Vmcc7MnG9EBiEGJOSSwTUD0DeZMSYsBa4oMKYlNSdkyJTm1AoQgzILw6kEC2dklPMaACQIPSRqhgGT37TvvmtjyFVsqmV8xZS_Pj6XfuvDfu1D1R12WLU1hq7tWszn5LTxm4wXvzomz_d3T9M5XTzOHqa3C7rimndUoECl6wl663XRoxjjbV0z9Bpq79EoIbnVurxmmUb1osSkLhUkNMaLMbnq9-5SfNtj7tw67lMoJ53gykrDmRTFxXvXKsWcEzZul9qtTwfHwB3xuB6PK3jcDx5nSkj0oVzMoRT-W_1P6htemWne
Cites_doi 10.1016/j.aim.2020.107037
10.1017/CBO9780511526251
10.1017/S0017089516000197
10.1007/s00026-012-0148-3
10.1016/j.aam.2015.02.001
10.1112/plms/s2-53.6.460
10.1090/cbms/066
10.1090/btran/158
10.1007/s11139-006-8483-9
10.1016/j.jmaa.2008.03.033
10.1017/S0013091515000425
10.1016/j.aam.2021.102267
10.1112/plms/s2-50.1.1
10.37236/36
10.1016/j.aim.2014.07.018
10.1016/j.aam.2016.04.003
10.1016/j.jmaa.2022.126459
10.1007/s11139-007-9109-6
10.1016/j.aam.2008.07.003
10.2307/2372962
10.1142/S1793042106000401
10.1007/s00208-016-1390-5
10.37236/1706
10.1112/plms/pdu007
10.1112/plms/s2-54.2.147
10.1016/0097-3165(79)90008-6
10.4064/aa-43-2-155-166
10.1016/j.aam.2022.102347
10.2140/pjm.1984.114.267
10.1006/aama.1999.0658
10.1016/j.aam.2010.01.002
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11139-025-01174-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9303
ExternalDocumentID 10_1007_s11139_025_01174_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12171255
– fundername: Foreign Youth Exchange Program of China Association of Science and Technology
GroupedDBID -~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
MA-
NB0
NPVJJ
NQJWS
O93
O9J
OAM
P9R
PF0
PT4
PT5
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
5VS
6TJ
AARHV
AAYXX
ABJCF
ABQSL
ABULA
ACBXY
ADHKG
ADQRH
AEBTG
AEKMD
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AHSBF
AJBLW
AZQEC
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FERAY
FINBP
FSGXE
GNUQQ
H13
HCIFZ
M2P
M4Y
M7S
N2Q
NU0
O9-
OVD
PHGZM
PHGZT
PQGLB
PTHSS
RNI
RZC
RZE
RZK
TEORI
ID FETCH-LOGICAL-c272t-3e3e57d6ea9a77d6a9a788a9dd1ea70daae85342977409917e5b536d01140f8a3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544262100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-4090
IngestDate Sat Oct 11 06:57:18 EDT 2025
Sat Nov 29 07:32:33 EST 2025
Wed Aug 13 01:30:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bailey’s lemma
Bailey pairs
Appell–Lerch sums
11F27
Rogers–Ramanujan type identities
11P84
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-3e3e57d6ea9a77d6a9a788a9dd1ea70daae85342977409917e5b536d01140f8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3259482143
PQPubID 2043831
ParticipantIDs proquest_journals_3259482143
crossref_primary_10_1007_s11139_025_01174_8
springer_journals_10_1007_s11139_025_01174_8
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan
PublicationTitle The Ramanujan journal
PublicationTitleAbbrev Ramanujan J
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References NSS Gu (1174_CR17) 2016; 79
LJ Slater (1174_CR36) 1952; 54
S-P Cui (1174_CR12) 2022; 515
DM Bressoud (1174_CR7) 1979; 27
KQ Ji (1174_CR21) 2015; 65
WN Bailey (1174_CR4) 1947; 49
DR Hickerson (1174_CR20) 2017; 367
NSS Gu (1174_CR18) 2010; 45
1174_CR26
G Gasper (1174_CR15) 2004
AV Sills (1174_CR33) 2006; 11
MJ Schlosser (1174_CR31) 2023; 10
LJ Slater (1174_CR35) 1951; 53
S Ramanujan (1174_CR29) 1914; 6
S-P Cui (1174_CR13) 2023; 151
W Chu (1174_CR9) 2009; 42
B Gordon (1174_CR16) 1961; 83
J McLaughlin (1174_CR24) 2008; 344
J McLaughlin (1174_CR25) 2012; 16
AV Sills (1174_CR34) 2018
GE Andrews (1174_CR3) 2009
JH Loxton (1174_CR23) 1984; 43
S-P Cui (1174_CR11) 2021; 131
S Cooper (1174_CR10) 2006; 2
OXM Yao (1174_CR37) 2022; 138
J Lovejoy (1174_CR22) 2017; 59
LJ Rogers (1174_CR30) 1894; 25
D Bowman (1174_CR6) 2009; 18
DR Hickerson (1174_CR19) 2014; 109
1174_CR2
1174_CR32
GE Andrews (1174_CR1) 1984; 114
D Chen (1174_CR8) 2020; 365
K Garrett (1174_CR14) 1999; 23
ET Mortenson (1174_CR28) 2016; 59
ET Mortenson (1174_CR27) 2014; 264
WN Bailey (1174_CR5) 1948; 50
References_xml – volume: 365
  year: 2020
  ident: 1174_CR8
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2020.107037
– volume-title: Basic Hypergeometric Series
  year: 2004
  ident: 1174_CR15
  doi: 10.1017/CBO9780511526251
– volume: 59
  start-page: 323
  year: 2017
  ident: 1174_CR22
  publication-title: Glasg. Math. J.
  doi: 10.1017/S0017089516000197
– volume: 16
  start-page: 591
  year: 2012
  ident: 1174_CR25
  publication-title: Ann. Comb.
  doi: 10.1007/s00026-012-0148-3
– volume: 65
  start-page: 65
  year: 2015
  ident: 1174_CR21
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2015.02.001
– volume: 53
  start-page: 460
  year: 1951
  ident: 1174_CR35
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s2-53.6.460
– ident: 1174_CR2
  doi: 10.1090/cbms/066
– volume: 10
  start-page: 1119
  year: 2023
  ident: 1174_CR31
  publication-title: Trans. Am. Math. Soc. Ser. B
  doi: 10.1090/btran/158
– volume: 6
  start-page: 199
  year: 1914
  ident: 1174_CR29
  publication-title: J. Indian Math. Soc.
– volume: 11
  start-page: 403
  year: 2006
  ident: 1174_CR33
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-006-8483-9
– volume: 344
  start-page: 765
  year: 2008
  ident: 1174_CR24
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.03.033
– volume: 59
  start-page: 787
  year: 2016
  ident: 1174_CR28
  publication-title: Proc. Edinb. Math. Soc.
  doi: 10.1017/S0013091515000425
– volume: 131
  year: 2021
  ident: 1174_CR11
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2021.102267
– volume: 50
  start-page: 1
  year: 1948
  ident: 1174_CR5
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s2-50.1.1
– ident: 1174_CR26
  doi: 10.37236/36
– volume: 264
  start-page: 236
  year: 2014
  ident: 1174_CR27
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2014.07.018
– volume: 25
  start-page: 318
  year: 1894
  ident: 1174_CR30
  publication-title: Proc. Lond. Math. Soc.
– volume: 79
  start-page: 98
  year: 2016
  ident: 1174_CR17
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2016.04.003
– volume: 515
  year: 2022
  ident: 1174_CR12
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2022.126459
– volume: 18
  start-page: 307
  year: 2009
  ident: 1174_CR6
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-007-9109-6
– volume: 42
  start-page: 358
  year: 2009
  ident: 1174_CR9
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2008.07.003
– volume: 83
  start-page: 393
  year: 1961
  ident: 1174_CR16
  publication-title: Am. J. Math.
  doi: 10.2307/2372962
– volume-title: Ramanujan’s Lost Notebook. Part II
  year: 2009
  ident: 1174_CR3
– volume: 2
  start-page: 115
  year: 2006
  ident: 1174_CR10
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042106000401
– volume-title: An Invitation to the Rogers–Ramanujan Identities
  year: 2018
  ident: 1174_CR34
– volume: 151
  start-page: 3317
  year: 2023
  ident: 1174_CR13
  publication-title: Proc. Am. Math. Soc.
– volume: 367
  start-page: 373
  year: 2017
  ident: 1174_CR20
  publication-title: Math. Ann.
  doi: 10.1007/s00208-016-1390-5
– ident: 1174_CR32
  doi: 10.37236/1706
– volume: 49
  start-page: 421
  year: 1947
  ident: 1174_CR4
  publication-title: Proc. Lond. Math. Soc.
– volume: 109
  start-page: 382
  year: 2014
  ident: 1174_CR19
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pdu007
– volume: 54
  start-page: 147
  year: 1952
  ident: 1174_CR36
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s2-54.2.147
– volume: 27
  start-page: 64
  year: 1979
  ident: 1174_CR7
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/0097-3165(79)90008-6
– volume: 43
  start-page: 155
  year: 1984
  ident: 1174_CR23
  publication-title: Acta Arith
  doi: 10.4064/aa-43-2-155-166
– volume: 138
  year: 2022
  ident: 1174_CR37
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2022.102347
– volume: 114
  start-page: 267
  year: 1984
  ident: 1174_CR1
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1984.114.267
– volume: 23
  start-page: 274
  year: 1999
  ident: 1174_CR14
  publication-title: Adv. Appl. Math.
  doi: 10.1006/aama.1999.0658
– volume: 45
  start-page: 149
  year: 2010
  ident: 1174_CR18
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2010.01.002
SSID ssj0004037
Score 2.3588154
Snippet The Rogers–Ramanujan identities were first proved by Rogers in 1894 and later rediscovered by Ramanujan around 1913. During the study of these two identities,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 32
SubjectTerms Combinatorics
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Number Theory
Subtitle Generalizations of Rogers–Ramanujan type identities
Title Generalizations of Rogers–Ramanujan type identities
URI https://link.springer.com/article/10.1007/s11139-025-01174-8
https://www.proquest.com/docview/3259482143
Volume 68
WOSCitedRecordID wos001544262100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004037
  issn: 1382-4090
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ29TsMwEMdPUBhg4BtRKCgDG1jKR2M7I0JUDFChAlU3y4ltCSRS1LTMvANvyJPgc2MiEAwweUh0ii527n85388Ax4wWaaiNISosCtLt5pTk1HCSI2o8UlpxVy4YXrF-n49G2U3dFFb53e6-JOm-1E2zW2TVCsHjV5Fj1iV8EZZSpM1gjn47bLohQ0fKRLiezY6ysG6V-dnG13DUaMxvZVEXbXrr_3vODVir1WVwNp8Om7Cgyy1Yvf5Es1bbkNagad9_GYxNMBhb89X769tAPsly9ijLAH_NBg_KI1d34L53cXd-SeqzE0gRs3hKEp3olCmqZSaZHXHgXGZKRVqyUEmpbaC2wcjKPysSI6bTPE2owvwoNFwmu9Aqx6Xeg4AaxHTxQnGKCZbMjUysMMgjZXTCJWvDiXeheJ4jMkQDQ0ZnCOsM4ZwheBs63suiXi6VSGKkxsRWu7Xh1Hu1ufy7tf2_3X4AK7F7MbhHrAOt6WSmD2G5eJk-VJMjN40-AMx_wb4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7oFNSDv8Xp1B68aaBt2iQ9ijgmbkPmHLuFtElgAztZN8_-D_6H_iUmXWtR9KCnHFIe4Uva972-vO8BnFOShK7SGkk3SVAQxATFRDMUW6lxTyrJ8nTBoE27XTYcRvdFUVhW3nYvU5L5l7oqdvMMW0G2_arVMQsQW4aVwLbZsTH6w6CqhnRzpUwrrmeio8gtSmV-tvHVHVUc81taNPc2za3_rXMbNgt26VwtjsMOLKl0FzY6n9Ks2R6EhdB0WX_pTLTTmxjz2fvrW088iXQ-Fqljf806I1lKru7DY_Omf91CRe8ElPjUnyGssAqpJEpEgprRDoyJSEpPCepKIZRx1MYZGfpnSKJHVRiHmEgbH7maCXwAtXSSqkNwiLYyXSyRjNgAS8RaYEMMYk9qhZmgdbgoIeTPC4kMXokhWzC4AYPnYHBWh0aJMi9el4xj36rGmL3EdbgsUa2mf7d29LfHz2Ct1e-0efu2e3cM636-Sfa-WANqs-lcncBq8jIbZdPT_Eh9AOvVxKI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsMwEFxBQQgOvBGFAjlwA6t52s4RARWIUlUFqt4sJ7alIpFWTcqZf-AP-RLsNCGA4IA4-ZDIicaOdja7MwY4JjgObKkUEnYcI9-PMIqwoigyVuOOkILm5YJ-m3Q6dDAIu59U_Hm3e1mSnGkajEtTkjXHQjUr4ZujmQsyR7EaTzMf0XlY8HUmY5q6enf9Shlp566ZxmhPZ0qhXchmfp7ja2iq-Oa3EmkeeVpr_3_ndVgtWKd1NtsmGzAnk01Yuf2wbE23ICgMqEtdpjVSVm-kH5W-vbz2-BNPpo88scwvW2soSivWbXhoXd6fX6HiTAUUu8TNkCc9GRCBJQ850aMZKOWhEI7kxBacSx3AdZDStFCTR4fIIAo8LEzeZCvKvR2oJaNE7oKFlbHvorGg2CRePFLc04QhcoSSHuWkDiclnGw8s85glUmyAYNpMFgOBqN1aJSIs-IzSpnnGjcZV3O6OpyWCFeXf59t72-3H8FS96LF2tedm31YdvM1Mm1kDahlk6k8gMX4ORumk8N8d70DcjfNhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalizations+of+Rogers%E2%80%93Ramanujan+type+identities&rft.jtitle=The+Ramanujan+journal&rft.au=Cui%2C+Su-Ping&rft.au=Gu%2C+Nancy+S.+S.&rft.au=Wang%2C+Qian&rft.date=2025-09-01&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=68&rft.issue=1&rft_id=info:doi/10.1007%2Fs11139-025-01174-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11139_025_01174_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon