On-orbit codes of posets and operators in algebra

For a partition μ of a positive integer and a prime p , let A ( p , μ ) be a finite Abelian p -group, and let A ^ ( p , μ ) be its dual group. We define a finite Abelian group as G = ⨁ A ( p , μ ) and its dual as G ^ = ⨁ A ^ ( p , μ ) . In this paper, we explore the symplectic structure associated w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algebraic combinatorics Vol. 62; no. 3; p. 44
Main Authors: Mesnager, Sihem, Raja, Rameez
Format: Journal Article
Language:English
Published: New York Springer US 01.11.2025
Springer Nature B.V
Subjects:
ISSN:0925-9899, 1572-9192
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For a partition μ of a positive integer and a prime p , let A ( p , μ ) be a finite Abelian p -group, and let A ^ ( p , μ ) be its dual group. We define a finite Abelian group as G = ⨁ A ( p , μ ) and its dual as G ^ = ⨁ A ^ ( p , μ ) . In this paper, we explore the symplectic structure associated with the group Z ( p , μ ) = A ( p , μ ) ⊕ A ^ ( p , μ ) and consider its action on the Hilbert space L 2 ( G ) . We investigate the correspondence between the ideals of a poset, which represent the sizes of bit strings, and the lengths of automorphism orbit code words . We also examine the orbits that result from the action of the symplectic structure on the group Z ( p , μ ) . Additionally, we present a study of μ -based poset orbit codes and the operators of the algebra H o m C ( L 2 ( G ) , L 2 ( G ) ) . This interaction among the order ideals of a poset, μ -based poset orbit codes, group symmetries, and the operators in the algebra H o m C ( L 2 ( G ) , L 2 ( G ) ) bridges the gap between combinatorial coding theory and quantum systems. It also provides practical insights for constructing quantum protocols in the context of modern quantum information theory and cryptography.
AbstractList For a partition μ of a positive integer and a prime p , let A ( p , μ ) be a finite Abelian p -group, and let A ^ ( p , μ ) be its dual group. We define a finite Abelian group as G = ⨁ A ( p , μ ) and its dual as G ^ = ⨁ A ^ ( p , μ ) . In this paper, we explore the symplectic structure associated with the group Z ( p , μ ) = A ( p , μ ) ⊕ A ^ ( p , μ ) and consider its action on the Hilbert space L 2 ( G ) . We investigate the correspondence between the ideals of a poset, which represent the sizes of bit strings, and the lengths of automorphism orbit code words . We also examine the orbits that result from the action of the symplectic structure on the group Z ( p , μ ) . Additionally, we present a study of μ -based poset orbit codes and the operators of the algebra H o m C ( L 2 ( G ) , L 2 ( G ) ) . This interaction among the order ideals of a poset, μ -based poset orbit codes, group symmetries, and the operators in the algebra H o m C ( L 2 ( G ) , L 2 ( G ) ) bridges the gap between combinatorial coding theory and quantum systems. It also provides practical insights for constructing quantum protocols in the context of modern quantum information theory and cryptography.
For a partition μ of a positive integer and a prime p, let A(p,μ) be a finite Abelian p-group, and let A^(p,μ) be its dual group. We define a finite Abelian group as G=⨁A(p,μ) and its dual as G^=⨁A^(p,μ). In this paper, we explore the symplectic structure associated with the group Z(p,μ)=A(p,μ)⊕A^(p,μ) and consider its action on the Hilbert space L2(G).We investigate the correspondence between the ideals of a poset, which represent the sizes of bit strings, and the lengths of automorphism orbit code words. We also examine the orbits that result from the action of the symplectic structure on the group Z(p,μ). Additionally, we present a study of μ-based poset orbit codes and the operators of the algebra HomC(L2(G),L2(G)). This interaction among the order ideals of a poset, μ-based poset orbit codes, group symmetries, and the operators in the algebra HomC(L2(G),L2(G)) bridges the gap between combinatorial coding theory and quantum systems. It also provides practical insights for constructing quantum protocols in the context of modern quantum information theory and cryptography.
ArticleNumber 44
Author Mesnager, Sihem
Raja, Rameez
Author_xml – sequence: 1
  givenname: Sihem
  orcidid: 0000-0003-4008-2031
  surname: Mesnager
  fullname: Mesnager, Sihem
  organization: Department of Mathematics, University of Paris VIII, F-93526 Saint-Denis, Laboratory Analysis, Geometry and Applications, LAGA, University Sorbonne Paris Nord, CNRS, UMR 7539, Telecom Paris, Polytechnic institute of Paris
– sequence: 2
  givenname: Rameez
  surname: Raja
  fullname: Raja, Rameez
  email: rameeznaqash@nitsri.ac.in
  organization: Department of Mathematics, National Institute of Technology Srinagar
BookMark eNp9kLtOAzEQRS0UJJLAD1BZojaMX-t1iSJeUqQ0UFt-bbRRsBd7U_D3LCwSHdUUc8-d0VmhRcopInRN4ZYCqLtKoQVKgEkCVDSayDO0pFIxoqlmC7QEPa10q_UFWtV6AADdUrlEdJdILq4fsc8hVpw7POQax4ptCjgPsdgxl4r7hO1xH12xl-i8s8car37nGr09Prxunsl29_Syud8SzxQbCQ9CKgut8MIJ8MopEWkAbZ3kNjjVKtU4aqkO07vWau1UEEJ53ujOc2_5Gt3MvUPJH6dYR3PIp5Kmk4azRjasFaKZUmxO-ZJrLbEzQ-nfbfk0FMy3GjOrMZMa86PGyAniM1SncNrH8lf9D_UFpwhm-g
Cites_doi 10.1016/j.laa.2003.09.001
10.1016/j.disc.2013.11.001
10.37236/4322
10.1016/j.disc.2024.113900
10.1016/j.ejc.2020.103228
10.1017/CBO9780511805967
10.1109/18.104333
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10801-025-01469-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1572-9192
ExternalDocumentID 10_1007_s10801_025_01469_5
GrantInformation_xml – fundername: Department of Science and Technology, Ministry of Science and Technology, India
  grantid: 2011/15/2023NBHM(R.P)/R&D II/5866].
  funderid: http://dx.doi.org/10.13039/501100001409
GroupedDBID -~C
.86
06D
0R~
0VY
199
1N0
203
29J
2J2
2JN
2JY
2KG
2KM
2LR
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MQGED
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
-Y2
-~9
1SB
2.D
28-
2P1
2VQ
5QI
692
6TJ
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AI.
AJBLW
ARAPS
AZQEC
BBWZM
BDATZ
BENPR
BGLVJ
CAG
CITATION
COF
DWQXO
EJD
FINBP
FSGXE
GNUQQ
H13
HCIFZ
K7-
KOW
KQ8
M2P
M7S
N2Q
NDZJH
NU0
O9-
OK1
OVD
PHGZM
PHGZT
PQGLB
PTHSS
R4E
REI
RNI
RZC
RZE
RZK
S26
S28
SCLPG
T16
TEORI
UZXMN
VFIZW
VH1
ZWQNP
JQ2
ID FETCH-LOGICAL-c272t-3d457a084c4b40c7b74e1d09ab53adb78776b1a19d469aa99b7d447c369fc3ca3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603510000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-9899
IngestDate Mon Nov 24 04:11:04 EST 2025
Thu Nov 27 00:16:52 EST 2025
Sun Nov 23 01:10:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 05E10
08A35
06A11
Automorphism Orbit Code
Poset
Hilbert space
Representation
Finite Abelian Group
81P70
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-3d457a084c4b40c7b74e1d09ab53adb78776b1a19d469aa99b7d447c369fc3ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4008-2031
PQID 3265628446
PQPubID 2043735
ParticipantIDs proquest_journals_3265628446
crossref_primary_10_1007_s10801_025_01469_5
springer_journals_10_1007_s10801_025_01469_5
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Journal of algebraic combinatorics
PublicationTitleAbbrev J Algebr Comb
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References M Nielsen (1469_CR8) 2011
1469_CR9
J Zhang (1469_CR10) 2021; 91
A Guo (1469_CR4) 2015; 22
F Fagnani (1469_CR3) 2004; 378
F Fagnani (1469_CR2) 2001; 123
S Mesnager (1469_CR6) 2024; 347
1469_CR7
A Barg (1469_CR1) 2014; 317
1469_CR5
References_xml – ident: 1469_CR7
– volume: 378
  start-page: 31
  year: 2004
  ident: 1469_CR3
  publication-title: Linear Algeb. Appl.
  doi: 10.1016/j.laa.2003.09.001
– volume: 317
  start-page: 1
  year: 2014
  ident: 1469_CR1
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2013.11.001
– volume: 22
  start-page: 1
  year: 2015
  ident: 1469_CR4
  publication-title: Electronic J. Combinatorics
  doi: 10.37236/4322
– volume: 347
  start-page: 113900
  year: 2024
  ident: 1469_CR6
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2024.113900
– volume: 123
  start-page: 327
  year: 2001
  ident: 1469_CR2
  publication-title: IMA Vol. Math. Appl.
– volume: 91
  start-page: 103228
  year: 2021
  ident: 1469_CR10
  publication-title: European J. Combinatorics
  doi: 10.1016/j.ejc.2020.103228
– ident: 1469_CR9
  doi: 10.1017/CBO9780511805967
– ident: 1469_CR5
  doi: 10.1109/18.104333
– volume-title: Quantum Computation and Quantum Information
  year: 2011
  ident: 1469_CR8
SSID ssj0009815
Score 2.3716471
Snippet For a partition μ of a positive integer and a prime p , let A ( p , μ ) be a finite Abelian p -group, and let A ^ ( p , μ ) be its dual group. We define a...
For a partition μ of a positive integer and a prime p, let A(p,μ) be a finite Abelian p-group, and let A^(p,μ) be its dual group. We define a finite Abelian...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 44
SubjectTerms Algebra
Automorphisms
Codes
Coding theory
Combinatorial analysis
Combinatorics
Computer Science
Convex and Discrete Geometry
Cryptography
Decomposition
Error correction & detection
Fourier transforms
Group theory
Group Theory and Generalizations
Hilbert space
Information theory
Lattices
Mathematics
Mathematics and Statistics
Operators (mathematics)
Orbits
Order
Ordered Algebraic Structures
Quantum phenomena
Quantum physics
Title On-orbit codes of posets and operators in algebra
URI https://link.springer.com/article/10.1007/s10801-025-01469-5
https://www.proquest.com/docview/3265628446
Volume 62
WOSCitedRecordID wos001603510000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9192
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009815
  issn: 0925-9899
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYCBQgFRKMgDG1hKHKe2R4RALBTEl7pF_orUJamawO_nkiYEEAww52RZLz7fO53vHsCpjJl0qVbUMxNRHlv0uSANKEtjGxuPJDoNarEJMZnI6VTdN01hRfvavS1J1jf1p2Y3WaW-rHpshkkdjVdhDcOdrAQbHh5fulG7cqlboNBSYTrRtMr8vMbXcNRxzG9l0TraXPf_t89t2GrYJblYHocdWPHZAPqtcgNpHHkAm7cf01qLXQjvMpovzKwkVYN7QfKUzPPClwXRmSP53Nel-ILMMlKpgmB-vQfP11dPlze0kVKglglW0sjxWOhAcssND6wwgvvQBUqbONLOoNeKsQl1qBzuWGuljHCcCxuNVWojq6N96GV55g-AIGVJGZKYsVQhxyMgLfdCBhJtncErawhnLaLJfDkxI-lmI1fYJIhNUmOTxEMYtaAnjfcUCVJKpGUSM9UhnLcgd59_X-3wb-ZHsMGq_1S3Fo6gVy5e_TGs27dyVixO6lP1DihxxD8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLVgIAEHBgPEYEAO3KBSP9IlOSLENMQ2EAy0W5SkqbRLO62F34_btQwQHOAcK4pe7PhZjm2Acx76PIqVcKyvA4eGBm3OjV3Hj0MTaoskOnbLYRNsNOKTiXioisKy-rd7nZIsX-pPxW68CH394rMZBnVOuAprFD1W0TH_8ell2WqXL-YWCJQUGE5UpTI_7_HVHS055re0aOltes3_nXMHtit2Sa4W6rALKzZpQbOe3EAqQ27B1vCjW2u2B9594qRzPc1JUeCekTQmszSzeUZUEpF0ZstUfEamCSmmgmB8vQ_PvZvxdd-pRik4xmd-7gQRDZlyOTVUU9cwzaj1IlcoHQYq0mi1rKs95YkIT6yUEJpFlDITdEVsAqOCA2gkaWIPgSBliX0kMV0uPIoqwA21jLscZSONT1YbLmpE5WzRMUMueyMX2EjERpbYyLANnRp0WVlPJpFSIi3jGKm24bIGebn8-25HfxM_g43-eDiQg9vR3TFs-sWdlWWGHWjk81d7AuvmLZ9m89NSw94BZc3HIw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQHxlMMBuTADar1kS7JEQETCBhIPMStyqvSLu20Fn4_TtcyQHBAnGtFkRM33yf7swGOeBxyk0rh2VBFHo01xpyf-l6YxjpWFkF06lfDJthwyF9exP0nFX9V7d6kJKeaBtelKSt7Y5P2PgnfuKPBoSs8Q4LnxfOwQF0hvePrD8-ztrt8OsNAoKVAalHLZn5e4-vTNMOb31Kk1cszaP9_z2uwWqNOcjq9JuswZ7MNaDcTHUgd4BuwcvvRxbXYhOAu8_KJGpXECd8LkqdknBe2LIjMDMnHtkrRF2SUETctBHn3FjwNLh7PLr16xIKnQxaWXmRozKTPqaaK-popRm1gfCFVHEmjMJpZXwUyEAZ3LKUQihlKmY76ItWRltE2tLI8sztAEMqkIYKbPhcBxavBNbWM-xxtjcJfWQeOG-8m42knjWTWM9n5JkHfJJVvkrgD3eYAkjqqigShJsI1jgy2AyeNw2eff19t92_mh7B0fz5Ibq6G13uwHLojq9SHXWiVk1e7D4v6rRwVk4Pqsr0Da4vQBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-orbit+codes+of+posets+and+operators+in+algebra&rft.jtitle=Journal+of+algebraic+combinatorics&rft.au=Mesnager%2C+Sihem&rft.au=Raja%2C+Rameez&rft.date=2025-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-9899&rft.eissn=1572-9192&rft.volume=62&rft.issue=3&rft.spage=44&rft_id=info:doi/10.1007%2Fs10801-025-01469-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9899&client=summon