Application of Deep Learning and Fuzzy Decision Support System in Residence Right Management

The administration of residence rights is essential for ensuring residential communities’ smooth and productive operation. However, resident rights management presents various issues, including the allocation of resources, security measures, and resident satisfaction. The difficulties associated wit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of fuzzy systems Ročník 27; číslo 8; s. 2563 - 2584
Hlavní autor: Fu, Liling
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2025
Springer Nature B.V
Témata:
ISSN:1562-2479, 2199-3211
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The administration of residence rights is essential for ensuring residential communities’ smooth and productive operation. However, resident rights management presents various issues, including the allocation of resources, security measures, and resident satisfaction. The difficulties associated with administrating residence rights highlight the necessity for sophisticated technologies to enhance the efficiency and efficacy of residential rights management significantly. This work explores the utilization of Deep Learning and Fuzzy Decision Support Systems for Residence Right Management (DLFDSS-RRM) to optimize resource allocation, improve security, and promote sustainability in residential communities through data-driven decision-making and adaptive strategies. Convolutional Neural Networks (CNN) are employed to analyze sensor data anomalies, feature selection, and pattern recognition, and Recurrent Neural Networks (RNN) are used to predict future trends in energy consumption, resident behavior, and security incidents, enabling accurate predictions and proactive decision making in residence right management. The present study enables the establishment of resident profiles, prediction of resource demand, detection of anomalies, and provision of individualized service suggestions. In addition, Fuzzy Decision Support Systems (FDSS) are integrated to effectively tackle the inherent uncertainties and vague information associated with suitable residential management duties. The suggested method utilizes fuzzy logic to enable a resilient decision-making process considering resident preferences, budget limitations, and environmental considerations. The approach effectively tackles multiple facets of residence right management by leveraging the synergistic integration of deep learning and FDSS. These technologies aim to optimize resident satisfaction, productivity, and resource consumption by optimizing resource allocation, predictive maintenance scheduling, strengthening security measures, and delivering tailored resident assistance. This study shows the impact of deep learning and FDSS modes in transforming residence right management. It opens the door to more complex and adaptable approaches to residential community needs.
AbstractList The administration of residence rights is essential for ensuring residential communities’ smooth and productive operation. However, resident rights management presents various issues, including the allocation of resources, security measures, and resident satisfaction. The difficulties associated with administrating residence rights highlight the necessity for sophisticated technologies to enhance the efficiency and efficacy of residential rights management significantly. This work explores the utilization of Deep Learning and Fuzzy Decision Support Systems for Residence Right Management (DLFDSS-RRM) to optimize resource allocation, improve security, and promote sustainability in residential communities through data-driven decision-making and adaptive strategies. Convolutional Neural Networks (CNN) are employed to analyze sensor data anomalies, feature selection, and pattern recognition, and Recurrent Neural Networks (RNN) are used to predict future trends in energy consumption, resident behavior, and security incidents, enabling accurate predictions and proactive decision making in residence right management. The present study enables the establishment of resident profiles, prediction of resource demand, detection of anomalies, and provision of individualized service suggestions. In addition, Fuzzy Decision Support Systems (FDSS) are integrated to effectively tackle the inherent uncertainties and vague information associated with suitable residential management duties. The suggested method utilizes fuzzy logic to enable a resilient decision-making process considering resident preferences, budget limitations, and environmental considerations. The approach effectively tackles multiple facets of residence right management by leveraging the synergistic integration of deep learning and FDSS. These technologies aim to optimize resident satisfaction, productivity, and resource consumption by optimizing resource allocation, predictive maintenance scheduling, strengthening security measures, and delivering tailored resident assistance. This study shows the impact of deep learning and FDSS modes in transforming residence right management. It opens the door to more complex and adaptable approaches to residential community needs.
Author Fu, Liling
Author_xml – sequence: 1
  givenname: Liling
  surname: Fu
  fullname: Fu, Liling
  email: liling_fu@hotmail.com
  organization: College of Law, Central University of Finance and Economics
BookMark eNp9kMFKAzEQhoNUsNa-gKeA59XMZDfJHku1KlSEVm9CiNlsjbTZNdke2qd3awVvnmYYvv8f-M7JIDTBEXIJ7BoYkzcpZwqKjGGeMShBZvKEDBHKMuMIMCBDKARmmMvyjIxT8u-MAwpeCD4kb5O2XXtrOt8E2tT01rmWzp2JwYcVNaGis-1-v-vv1qcDs9y2bRM7utylzm2oD3Thkq9csI4u_Oqjo08mmJXbuNBdkNParJMb_84ReZ3dvUwfsvnz_eN0Ms8sSuwybsEZEFZJUYEVykner7yECipbYCW4UCVDo5BBpWpURZEXpa1lmVeIteEjcnXsbWPztXWp05_NNob-peYoCwEKFPYUHikbm5Siq3Ub_cbEnQamDyL1UaTuReofkVr2IX4MpR4OKxf_qv9JfQNjSnag
Cites_doi 10.1016/j.egyr.2023.12.039
10.1016/j.apenergy.2020.114551
10.1109/ICBATS54253.2022.9759073
10.3390/land10111280
10.1016/j.epsr.2020.106483
10.1007/978-3-031-04695-7
10.1049/el.2020.1736
10.1016/j.enconman.2022.116527
10.1109/TETCI.2022.3157026
10.1016/j.ijdrr.2022.103490
10.1109/ACCESS.2020.2974286
10.1155/2022/7561210
10.1108/OHI-01-2022-0010
10.3390/land11091421
10.1049/itr2.12343
10.1080/02723638.2022.2092306
10.1016/j.enbuild.2021.110727
10.1016/j.ijepes.2022.108768
10.3390/ijgi10020070
10.1109/TPEC48276.2020.9042571
10.3390/computers11020026
10.2196/16854
10.1080/23744731.2023.2235971
10.1109/TII.2020.2971227
10.1007/s10916-018-1045-z
10.3389/fpubh.2020.00226
10.1016/j.rser.2022.112297
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2025.
Copyright_xml – notice: The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s40815-024-01917-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-3211
EndPage 2584
ExternalDocumentID 10_1007_s40815_024_01917_7
GroupedDBID .4S
.DC
0R~
188
203
2UF
4.4
406
5GY
9RA
A8Z
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
ARCSS
ATFKH
ATHPR
AVXWI
AXYYD
AYFIA
BENPR
BGLVJ
BGNMA
CCPQU
CNMHZ
CSCUP
CVCKV
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
ESTFP
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GJIRD
HCIFZ
HG6
HRMNR
I-F
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
OK1
P2P
PHGZM
PHGZT
PQGLB
PT4
PTHSS
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
TUXDW
UG4
UOJIU
UTJUX
UZ4
UZXMN
VFIZW
ZMTXR
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c272t-3c1ea16c876d1c68e73876391d1dc52d6368902a8201d8f2855459cf794d22fa3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001449792400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1562-2479
IngestDate Sat Nov 29 03:45:34 EST 2025
Thu Nov 27 00:57:38 EST 2025
Wed Nov 26 03:33:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Deep learning
Recurrent neural networks
Resource allocation
Residence right management
Fuzzy decision support systems
Security
Convolutional neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-3c1ea16c876d1c68e73876391d1dc52d6368902a8201d8f2855459cf794d22fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3275618182
PQPubID 2043640
PageCount 22
ParticipantIDs proquest_journals_3275618182
crossref_primary_10_1007_s40815_024_01917_7
springer_journals_10_1007_s40815_024_01917_7
PublicationCentury 2000
PublicationDate 20251100
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 20251100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of fuzzy systems
PublicationTitleAbbrev Int. J. Fuzzy Syst
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Q Mao (1917_CR3) 2020; 8
1917_CR22
P Mohamed Shakeel (1917_CR17) 2018; 42
GC de Oliveira (1917_CR25) 2022; 161
1917_CR28
BC Lai (1917_CR16) 2022; 6
J Famiglietti (1917_CR14) 2023; 276
D Saxena (1917_CR5) 2020; 56
MA Alghassab (1917_CR23) 2024; 11
JL Johs-Artisensi (1917_CR24) 2022
H Gao (1917_CR27) 2022; 11
Y Liang (1917_CR12) 2023; 85
Q Zhang (1917_CR4) 2021; 10
X Shi (1917_CR6) 2023; 48
C Lemanski (1917_CR1) 2023; 44
R Jing (1917_CR8) 2020; 262
Z Li (1917_CR10) 2020; 17
J Yu (1917_CR19) 2022; 11
Y Yang (1917_CR15) 2024; 18
F Alfaverh (1917_CR20) 2020; 8
L Pan (1917_CR7) 2021; 10
I Rawtaer (1917_CR26) 2020; 22
T Han (1917_CR2) 2022; 2022
Z Li (1917_CR13) 2023; 146
ASM Jaya (1917_CR18) 2014; 26
MJ Ritchie (1917_CR9) 2021; 235
M Farrokhifar (1917_CR11) 2020; 187
1917_CR21
References_xml – volume: 11
  start-page: 1212
  year: 2024
  ident: 1917_CR23
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2023.12.039
– volume: 262
  year: 2020
  ident: 1917_CR8
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114551
– ident: 1917_CR21
  doi: 10.1109/ICBATS54253.2022.9759073
– volume: 10
  start-page: 1280
  issue: 11
  year: 2021
  ident: 1917_CR4
  publication-title: Land
  doi: 10.3390/land10111280
– volume: 187
  year: 2020
  ident: 1917_CR11
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106483
– volume-title: Quality of Life and Well-Being for Residents in Long-Term Care Communities. Perspectives on Policies and Practices
  year: 2022
  ident: 1917_CR24
  doi: 10.1007/978-3-031-04695-7
– volume: 56
  start-page: 1062
  issue: 20
  year: 2020
  ident: 1917_CR5
  publication-title: Electron. Lett.
  doi: 10.1049/el.2020.1736
– volume: 276
  year: 2023
  ident: 1917_CR14
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2022.116527
– volume: 6
  start-page: 568
  issue: 3
  year: 2022
  ident: 1917_CR16
  publication-title: IEEE Trans. Emerging Top. Comput. Intell.
  doi: 10.1109/TETCI.2022.3157026
– volume: 85
  year: 2023
  ident: 1917_CR12
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2022.103490
– volume: 8
  start-page: 39310
  year: 2020
  ident: 1917_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974286
– volume: 2022
  start-page: 7561210
  issue: 1
  year: 2022
  ident: 1917_CR2
  publication-title: Discrete Dynamics in Nature and Society
  doi: 10.1155/2022/7561210
– volume: 48
  start-page: 325
  issue: 2
  year: 2023
  ident: 1917_CR6
  publication-title: Open House Int.
  doi: 10.1108/OHI-01-2022-0010
– volume: 11
  start-page: 1421
  issue: 9
  year: 2022
  ident: 1917_CR27
  publication-title: Land
  doi: 10.3390/land11091421
– volume: 18
  start-page: 599
  issue: 4
  year: 2024
  ident: 1917_CR15
  publication-title: IET Intelligent Transport Systems
  doi: 10.1049/itr2.12343
– volume: 44
  start-page: 1305
  issue: 7
  year: 2023
  ident: 1917_CR1
  publication-title: Urban Geogr.
  doi: 10.1080/02723638.2022.2092306
– volume: 235
  year: 2021
  ident: 1917_CR9
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.110727
– volume: 146
  year: 2023
  ident: 1917_CR13
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108768
– volume: 10
  start-page: 70
  issue: 2
  year: 2021
  ident: 1917_CR7
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi10020070
– ident: 1917_CR22
  doi: 10.1109/TPEC48276.2020.9042571
– volume: 11
  start-page: 26
  issue: 2
  year: 2022
  ident: 1917_CR19
  publication-title: Computers
  doi: 10.3390/computers11020026
– volume: 26
  start-page: 1563
  issue: 4
  year: 2014
  ident: 1917_CR18
  publication-title: Sci. Int.
– volume: 22
  issue: 5
  year: 2020
  ident: 1917_CR26
  publication-title: J. Med. Internet Res.
  doi: 10.2196/16854
– ident: 1917_CR28
  doi: 10.1080/23744731.2023.2235971
– volume: 17
  start-page: 991
  issue: 2
  year: 2020
  ident: 1917_CR10
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2020.2971227
– volume: 42
  start-page: 1
  year: 2018
  ident: 1917_CR17
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1045-z
– volume: 8
  start-page: 226
  year: 2020
  ident: 1917_CR3
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2020.00226
– volume: 161
  year: 2022
  ident: 1917_CR25
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112297
SSID ssib031263563
ssib053833614
ssib026410675
ssj0002147029
ssib008679421
Score 2.358097
Snippet The administration of residence rights is essential for ensuring residential communities’ smooth and productive operation. However, resident rights management...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2563
SubjectTerms Algorithms
Alternative energy sources
Anomalies
Artificial Intelligence
Artificial neural networks
Computational Intelligence
Cost reduction
Decision making
Decision support systems
Deep learning
Efficiency
Energy consumption
Energy management
Energy resources
Energy storage
Engineering
Food quality
Food security
Fuzzy logic
Happiness
Heating
Machine learning
Maintenance management
Management Science
Operations Research
Optimization
Pattern recognition
Predictive maintenance
Recurrent neural networks
Renewable resources
Residential communities
Resource allocation
Security
Security management
Sustainability
Title Application of Deep Learning and Fuzzy Decision Support System in Residence Right Management
URI https://link.springer.com/article/10.1007/s40815-024-01917-7
https://www.proquest.com/docview/3275618182
Volume 27
WOSCitedRecordID wos001449792400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: RSV
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWKrtxnbGCqgYUIUKVB2QotR2UJe06gOJ_np8zqsgGGBNIis5n--Ru_s-hC4TY2KtREicd2KkRTUnYWIDIoRR7jgNVdPzp_QfZLerBoPwMR8KmxXd7kVJ0lvqctit5bwXTBND14RLMohcRxsBoM1Ajv7UL7UIIORWpjedxweYtFJrOQX8lQp0yp14znMn5e03MPc0Pb2Zy20YYS0Z5tM2P7_GV49WhanfKqveYXV2__epe2gnD1BxO9OofbRm0wO0vQJbeIhe21XVG48TfGvtBOdArW84Tg3uLJbLD3c94-_BQB3qwnycwaPjUYp7dpaxmeIe_B3AVRfOEXrp3D3f3JOcpYFoJtmccE1tTIV2ZtVQLZSVHFDuQmqo0QEzgguoZcYQahiVMOiLC0KduE0yjCUxP0a1dJzaE4TDoYwlpy6I0NQjATKmYhVo4fYTqGjq6KqQdDTJwDiiEnbZyyxyMou8zCJZR41iM6L8YM4iDnD3LqpRrI6uC-FXt39f7fRvj5-hLQZMwX5qsYFq8-nCnqNN_T4fzaYXXmE_ARHJ2zE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xkoCBN6JQwAMbWKrtNnHGCqiKKBUqpeqAFKW2g7qkFS1I8OvxOUlTEAywJpGV3MN3zt19H8BZrHWkpBdQG504rTIlaBCbGvU8La07DWTF8af0Wn67Lfv94D4bCpvk3e55SdLt1LNht6qNXjhNjF0T9pBB_UVYriLNDp7RH3ozK0IIubnpTRvxESZtZrWCIf5KATplPV6ILEi5_RuXrDh6M3u24ZRX_SCbtvn5Nb5GtCJN_VZZdQGrsfm_T92CjSxBJfXUorZhwSQ7sD4HW7gLT_Wi6k1GMbkyZkwyoNZnEiWaNF4_Pt7t9ZS_hyB1qE3zSQqPToYJ6ZhJymZKOvh3gBRdOHvw2LjuXjZpxtJAFff5lArFTMQ8ZbdVzZQnjS8Q5S5gmmlV49oTHtYyI0w1tIw59sXVAhVbJWnO40jsw1IySswBkGDgR75gNolQzCEBci4jWVOe1SdS0ZTgPJd0OE7BOMIZ7LKTWWhlFjqZhX4JyrkywswxJ6FAuHub1Uhegotc-MXt31c7_Nvjp7Da7N61wtZN-_YI1jiyBrsJxjIsTV9ezTGsqLfpcPJy4oz3E2Bq3hU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20iujBb7FadQ_edLG72yabo6hFUYpULT0IId3diJdY2lSwv96dTZpU0YN4TUJIZmYzs5l57wEcx1pHSnoBtdmJ0wZTggaxaVLP09Iup76sO_2U7p3fbsteL7ifQfG7afdpSzLDNCBLU5KeDXR8VgDfGjaTIbIYJyjshoP687DQsDsZHOrqPHSLiEI6uRkkp83-SJlWRLBgyMVSElDZ1S9EnrDctxxVfOpO6szuczjlDT_IkTc_P8bX7FaWrN-6rC55tdb-_9rrsJoXruQ8i7QNmDPJJqzM0BluwfN52Q0nbzG5NGZAcgLXFxIlmrTGk8mHPZ7p-hCUFLXlP8lo08lrQjpmlKmckg7-NSDldM42PLWuHi-uaa7eQBX3eUqFYiZinrKfW82UJ40vkP0uYJpp1eTaEx72OCMsQbSMOc7LNQMVW4dpzuNI7EAleUvMLpCg70e-YLa4UMwxBHIuI9lUnvUtStRU4WRq9XCQkXSEBR2zs1lobRY6m4V-FWpTx4T5gh2FAmnwbbUjeRVOp44oT_9-t72_XX4ES_eXrfDupn27D8scxYQdsLEGlXQ4NgewqN7T19Hw0MXxJxw25vk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Deep+Learning+and+Fuzzy+Decision+Support+System+in+Residence+Right+Management&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Fu%2C+Liling&rft.date=2025-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=27&rft.issue=8&rft.spage=2563&rft.epage=2584&rft_id=info:doi/10.1007%2Fs40815-024-01917-7&rft.externalDocID=10_1007_s40815_024_01917_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon