Application of Deep Learning and Fuzzy Decision Support System in Residence Right Management
The administration of residence rights is essential for ensuring residential communities’ smooth and productive operation. However, resident rights management presents various issues, including the allocation of resources, security measures, and resident satisfaction. The difficulties associated wit...
Uloženo v:
| Vydáno v: | International journal of fuzzy systems Ročník 27; číslo 8; s. 2563 - 2584 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1562-2479, 2199-3211 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The administration of residence rights is essential for ensuring residential communities’ smooth and productive operation. However, resident rights management presents various issues, including the allocation of resources, security measures, and resident satisfaction. The difficulties associated with administrating residence rights highlight the necessity for sophisticated technologies to enhance the efficiency and efficacy of residential rights management significantly. This work explores the utilization of Deep Learning and Fuzzy Decision Support Systems for Residence Right Management (DLFDSS-RRM) to optimize resource allocation, improve security, and promote sustainability in residential communities through data-driven decision-making and adaptive strategies. Convolutional Neural Networks (CNN) are employed to analyze sensor data anomalies, feature selection, and pattern recognition, and Recurrent Neural Networks (RNN) are used to predict future trends in energy consumption, resident behavior, and security incidents, enabling accurate predictions and proactive decision making in residence right management. The present study enables the establishment of resident profiles, prediction of resource demand, detection of anomalies, and provision of individualized service suggestions. In addition, Fuzzy Decision Support Systems (FDSS) are integrated to effectively tackle the inherent uncertainties and vague information associated with suitable residential management duties. The suggested method utilizes fuzzy logic to enable a resilient decision-making process considering resident preferences, budget limitations, and environmental considerations. The approach effectively tackles multiple facets of residence right management by leveraging the synergistic integration of deep learning and FDSS. These technologies aim to optimize resident satisfaction, productivity, and resource consumption by optimizing resource allocation, predictive maintenance scheduling, strengthening security measures, and delivering tailored resident assistance. This study shows the impact of deep learning and FDSS modes in transforming residence right management. It opens the door to more complex and adaptable approaches to residential community needs. |
|---|---|
| AbstractList | The administration of residence rights is essential for ensuring residential communities’ smooth and productive operation. However, resident rights management presents various issues, including the allocation of resources, security measures, and resident satisfaction. The difficulties associated with administrating residence rights highlight the necessity for sophisticated technologies to enhance the efficiency and efficacy of residential rights management significantly. This work explores the utilization of Deep Learning and Fuzzy Decision Support Systems for Residence Right Management (DLFDSS-RRM) to optimize resource allocation, improve security, and promote sustainability in residential communities through data-driven decision-making and adaptive strategies. Convolutional Neural Networks (CNN) are employed to analyze sensor data anomalies, feature selection, and pattern recognition, and Recurrent Neural Networks (RNN) are used to predict future trends in energy consumption, resident behavior, and security incidents, enabling accurate predictions and proactive decision making in residence right management. The present study enables the establishment of resident profiles, prediction of resource demand, detection of anomalies, and provision of individualized service suggestions. In addition, Fuzzy Decision Support Systems (FDSS) are integrated to effectively tackle the inherent uncertainties and vague information associated with suitable residential management duties. The suggested method utilizes fuzzy logic to enable a resilient decision-making process considering resident preferences, budget limitations, and environmental considerations. The approach effectively tackles multiple facets of residence right management by leveraging the synergistic integration of deep learning and FDSS. These technologies aim to optimize resident satisfaction, productivity, and resource consumption by optimizing resource allocation, predictive maintenance scheduling, strengthening security measures, and delivering tailored resident assistance. This study shows the impact of deep learning and FDSS modes in transforming residence right management. It opens the door to more complex and adaptable approaches to residential community needs. |
| Author | Fu, Liling |
| Author_xml | – sequence: 1 givenname: Liling surname: Fu fullname: Fu, Liling email: liling_fu@hotmail.com organization: College of Law, Central University of Finance and Economics |
| BookMark | eNp9kMFKAzEQhoNUsNa-gKeA59XMZDfJHku1KlSEVm9CiNlsjbTZNdke2qd3awVvnmYYvv8f-M7JIDTBEXIJ7BoYkzcpZwqKjGGeMShBZvKEDBHKMuMIMCBDKARmmMvyjIxT8u-MAwpeCD4kb5O2XXtrOt8E2tT01rmWzp2JwYcVNaGis-1-v-vv1qcDs9y2bRM7utylzm2oD3Thkq9csI4u_Oqjo08mmJXbuNBdkNParJMb_84ReZ3dvUwfsvnz_eN0Ms8sSuwybsEZEFZJUYEVykner7yECipbYCW4UCVDo5BBpWpURZEXpa1lmVeIteEjcnXsbWPztXWp05_NNob-peYoCwEKFPYUHikbm5Siq3Ub_cbEnQamDyL1UaTuReofkVr2IX4MpR4OKxf_qv9JfQNjSnag |
| Cites_doi | 10.1016/j.egyr.2023.12.039 10.1016/j.apenergy.2020.114551 10.1109/ICBATS54253.2022.9759073 10.3390/land10111280 10.1016/j.epsr.2020.106483 10.1007/978-3-031-04695-7 10.1049/el.2020.1736 10.1016/j.enconman.2022.116527 10.1109/TETCI.2022.3157026 10.1016/j.ijdrr.2022.103490 10.1109/ACCESS.2020.2974286 10.1155/2022/7561210 10.1108/OHI-01-2022-0010 10.3390/land11091421 10.1049/itr2.12343 10.1080/02723638.2022.2092306 10.1016/j.enbuild.2021.110727 10.1016/j.ijepes.2022.108768 10.3390/ijgi10020070 10.1109/TPEC48276.2020.9042571 10.3390/computers11020026 10.2196/16854 10.1080/23744731.2023.2235971 10.1109/TII.2020.2971227 10.1007/s10916-018-1045-z 10.3389/fpubh.2020.00226 10.1016/j.rser.2022.112297 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2025. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s40815-024-01917-7 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2199-3211 |
| EndPage | 2584 |
| ExternalDocumentID | 10_1007_s40815_024_01917_7 |
| GroupedDBID | .4S .DC 0R~ 188 203 2UF 4.4 406 5GY 9RA A8Z AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFHIU AFKRA AFOHR AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AIAKS AIGIU AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ARAPS ARCSS ATFKH ATHPR AVXWI AXYYD AYFIA BENPR BGLVJ BGNMA CCPQU CNMHZ CSCUP CVCKV DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG ESTFP FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GJIRD HCIFZ HG6 HRMNR I-F IKXTQ IWAJR IXD J-C J9A JBSCW JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J OK1 P2P PHGZM PHGZT PQGLB PT4 PTHSS RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS TUXDW UG4 UOJIU UTJUX UZ4 UZXMN VFIZW ZMTXR AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c272t-3c1ea16c876d1c68e73876391d1dc52d6368902a8201d8f2855459cf794d22fa3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001449792400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1562-2479 |
| IngestDate | Sat Nov 29 03:45:34 EST 2025 Thu Nov 27 00:57:38 EST 2025 Wed Nov 26 03:33:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Deep learning Recurrent neural networks Resource allocation Residence right management Fuzzy decision support systems Security Convolutional neural networks |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-3c1ea16c876d1c68e73876391d1dc52d6368902a8201d8f2855459cf794d22fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3275618182 |
| PQPubID | 2043640 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_3275618182 crossref_primary_10_1007_s40815_024_01917_7 springer_journals_10_1007_s40815_024_01917_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20251100 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 20251100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of fuzzy systems |
| PublicationTitleAbbrev | Int. J. Fuzzy Syst |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Q Mao (1917_CR3) 2020; 8 1917_CR22 P Mohamed Shakeel (1917_CR17) 2018; 42 GC de Oliveira (1917_CR25) 2022; 161 1917_CR28 BC Lai (1917_CR16) 2022; 6 J Famiglietti (1917_CR14) 2023; 276 D Saxena (1917_CR5) 2020; 56 MA Alghassab (1917_CR23) 2024; 11 JL Johs-Artisensi (1917_CR24) 2022 H Gao (1917_CR27) 2022; 11 Y Liang (1917_CR12) 2023; 85 Q Zhang (1917_CR4) 2021; 10 X Shi (1917_CR6) 2023; 48 C Lemanski (1917_CR1) 2023; 44 R Jing (1917_CR8) 2020; 262 Z Li (1917_CR10) 2020; 17 J Yu (1917_CR19) 2022; 11 Y Yang (1917_CR15) 2024; 18 F Alfaverh (1917_CR20) 2020; 8 L Pan (1917_CR7) 2021; 10 I Rawtaer (1917_CR26) 2020; 22 T Han (1917_CR2) 2022; 2022 Z Li (1917_CR13) 2023; 146 ASM Jaya (1917_CR18) 2014; 26 MJ Ritchie (1917_CR9) 2021; 235 M Farrokhifar (1917_CR11) 2020; 187 1917_CR21 |
| References_xml | – volume: 11 start-page: 1212 year: 2024 ident: 1917_CR23 publication-title: Energy Reports doi: 10.1016/j.egyr.2023.12.039 – volume: 262 year: 2020 ident: 1917_CR8 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114551 – ident: 1917_CR21 doi: 10.1109/ICBATS54253.2022.9759073 – volume: 10 start-page: 1280 issue: 11 year: 2021 ident: 1917_CR4 publication-title: Land doi: 10.3390/land10111280 – volume: 187 year: 2020 ident: 1917_CR11 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106483 – volume-title: Quality of Life and Well-Being for Residents in Long-Term Care Communities. Perspectives on Policies and Practices year: 2022 ident: 1917_CR24 doi: 10.1007/978-3-031-04695-7 – volume: 56 start-page: 1062 issue: 20 year: 2020 ident: 1917_CR5 publication-title: Electron. Lett. doi: 10.1049/el.2020.1736 – volume: 276 year: 2023 ident: 1917_CR14 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2022.116527 – volume: 6 start-page: 568 issue: 3 year: 2022 ident: 1917_CR16 publication-title: IEEE Trans. Emerging Top. Comput. Intell. doi: 10.1109/TETCI.2022.3157026 – volume: 85 year: 2023 ident: 1917_CR12 publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2022.103490 – volume: 8 start-page: 39310 year: 2020 ident: 1917_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974286 – volume: 2022 start-page: 7561210 issue: 1 year: 2022 ident: 1917_CR2 publication-title: Discrete Dynamics in Nature and Society doi: 10.1155/2022/7561210 – volume: 48 start-page: 325 issue: 2 year: 2023 ident: 1917_CR6 publication-title: Open House Int. doi: 10.1108/OHI-01-2022-0010 – volume: 11 start-page: 1421 issue: 9 year: 2022 ident: 1917_CR27 publication-title: Land doi: 10.3390/land11091421 – volume: 18 start-page: 599 issue: 4 year: 2024 ident: 1917_CR15 publication-title: IET Intelligent Transport Systems doi: 10.1049/itr2.12343 – volume: 44 start-page: 1305 issue: 7 year: 2023 ident: 1917_CR1 publication-title: Urban Geogr. doi: 10.1080/02723638.2022.2092306 – volume: 235 year: 2021 ident: 1917_CR9 publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.110727 – volume: 146 year: 2023 ident: 1917_CR13 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108768 – volume: 10 start-page: 70 issue: 2 year: 2021 ident: 1917_CR7 publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi10020070 – ident: 1917_CR22 doi: 10.1109/TPEC48276.2020.9042571 – volume: 11 start-page: 26 issue: 2 year: 2022 ident: 1917_CR19 publication-title: Computers doi: 10.3390/computers11020026 – volume: 26 start-page: 1563 issue: 4 year: 2014 ident: 1917_CR18 publication-title: Sci. Int. – volume: 22 issue: 5 year: 2020 ident: 1917_CR26 publication-title: J. Med. Internet Res. doi: 10.2196/16854 – ident: 1917_CR28 doi: 10.1080/23744731.2023.2235971 – volume: 17 start-page: 991 issue: 2 year: 2020 ident: 1917_CR10 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2020.2971227 – volume: 42 start-page: 1 year: 2018 ident: 1917_CR17 publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1045-z – volume: 8 start-page: 226 year: 2020 ident: 1917_CR3 publication-title: Front. Public Health doi: 10.3389/fpubh.2020.00226 – volume: 161 year: 2022 ident: 1917_CR25 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112297 |
| SSID | ssib031263563 ssib053833614 ssib026410675 ssj0002147029 ssib008679421 |
| Score | 2.358097 |
| Snippet | The administration of residence rights is essential for ensuring residential communities’ smooth and productive operation. However, resident rights management... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2563 |
| SubjectTerms | Algorithms Alternative energy sources Anomalies Artificial Intelligence Artificial neural networks Computational Intelligence Cost reduction Decision making Decision support systems Deep learning Efficiency Energy consumption Energy management Energy resources Energy storage Engineering Food quality Food security Fuzzy logic Happiness Heating Machine learning Maintenance management Management Science Operations Research Optimization Pattern recognition Predictive maintenance Recurrent neural networks Renewable resources Residential communities Resource allocation Security Security management Sustainability |
| Title | Application of Deep Learning and Fuzzy Decision Support System in Residence Right Management |
| URI | https://link.springer.com/article/10.1007/s40815-024-01917-7 https://www.proquest.com/docview/3275618182 |
| Volume | 27 |
| WOSCitedRecordID | wos001449792400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 2199-3211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: RSV dateStart: 20150301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWKrtxnbGCqgYUIUKVB2QotR2UJe06gOJ_np8zqsgGGBNIis5n--Ru_s-hC4TY2KtREicd2KkRTUnYWIDIoRR7jgNVdPzp_QfZLerBoPwMR8KmxXd7kVJ0lvqctit5bwXTBND14RLMohcRxsBoM1Ajv7UL7UIIORWpjedxweYtFJrOQX8lQp0yp14znMn5e03MPc0Pb2Zy20YYS0Z5tM2P7_GV49WhanfKqveYXV2__epe2gnD1BxO9OofbRm0wO0vQJbeIhe21XVG48TfGvtBOdArW84Tg3uLJbLD3c94-_BQB3qwnycwaPjUYp7dpaxmeIe_B3AVRfOEXrp3D3f3JOcpYFoJtmccE1tTIV2ZtVQLZSVHFDuQmqo0QEzgguoZcYQahiVMOiLC0KduE0yjCUxP0a1dJzaE4TDoYwlpy6I0NQjATKmYhVo4fYTqGjq6KqQdDTJwDiiEnbZyyxyMou8zCJZR41iM6L8YM4iDnD3LqpRrI6uC-FXt39f7fRvj5-hLQZMwX5qsYFq8-nCnqNN_T4fzaYXXmE_ARHJ2zE |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xkoCBN6JQwAMbWKrtNnHGCqiKKBUqpeqAFKW2g7qkFS1I8OvxOUlTEAywJpGV3MN3zt19H8BZrHWkpBdQG504rTIlaBCbGvU8La07DWTF8af0Wn67Lfv94D4bCpvk3e55SdLt1LNht6qNXjhNjF0T9pBB_UVYriLNDp7RH3ozK0IIubnpTRvxESZtZrWCIf5KATplPV6ILEi5_RuXrDh6M3u24ZRX_SCbtvn5Nb5GtCJN_VZZdQGrsfm_T92CjSxBJfXUorZhwSQ7sD4HW7gLT_Wi6k1GMbkyZkwyoNZnEiWaNF4_Pt7t9ZS_hyB1qE3zSQqPToYJ6ZhJymZKOvh3gBRdOHvw2LjuXjZpxtJAFff5lArFTMQ8ZbdVzZQnjS8Q5S5gmmlV49oTHtYyI0w1tIw59sXVAhVbJWnO40jsw1IySswBkGDgR75gNolQzCEBci4jWVOe1SdS0ZTgPJd0OE7BOMIZ7LKTWWhlFjqZhX4JyrkywswxJ6FAuHub1Uhegotc-MXt31c7_Nvjp7Da7N61wtZN-_YI1jiyBrsJxjIsTV9ezTGsqLfpcPJy4oz3E2Bq3hU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20iujBb7FadQ_edLG72yabo6hFUYpULT0IId3diJdY2lSwv96dTZpU0YN4TUJIZmYzs5l57wEcx1pHSnoBtdmJ0wZTggaxaVLP09Iup76sO_2U7p3fbsteL7ifQfG7afdpSzLDNCBLU5KeDXR8VgDfGjaTIbIYJyjshoP687DQsDsZHOrqPHSLiEI6uRkkp83-SJlWRLBgyMVSElDZ1S9EnrDctxxVfOpO6szuczjlDT_IkTc_P8bX7FaWrN-6rC55tdb-_9rrsJoXruQ8i7QNmDPJJqzM0BluwfN52Q0nbzG5NGZAcgLXFxIlmrTGk8mHPZ7p-hCUFLXlP8lo08lrQjpmlKmckg7-NSDldM42PLWuHi-uaa7eQBX3eUqFYiZinrKfW82UJ40vkP0uYJpp1eTaEx72OCMsQbSMOc7LNQMVW4dpzuNI7EAleUvMLpCg70e-YLa4UMwxBHIuI9lUnvUtStRU4WRq9XCQkXSEBR2zs1lobRY6m4V-FWpTx4T5gh2FAmnwbbUjeRVOp44oT_9-t72_XX4ES_eXrfDupn27D8scxYQdsLEGlXQ4NgewqN7T19Hw0MXxJxw25vk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Deep+Learning+and+Fuzzy+Decision+Support+System+in+Residence+Right+Management&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Fu%2C+Liling&rft.date=2025-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=27&rft.issue=8&rft.spage=2563&rft.epage=2584&rft_id=info:doi/10.1007%2Fs40815-024-01917-7&rft.externalDocID=10_1007_s40815_024_01917_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon |